题目链接

https://www.luogu.com.cn/problem/P4779

题目大意

给定一个 \(n\) 个点 \(m\) 条边有向图,每个点有一个非负权值,求从 \(s\) 点出发,到每个点的最短距离。

数据保证能从 \(s\) 出发到任意点。

题目解析

朴素的 \(\mathrm{Dijkstra}\) 算法时间复杂度为 \(O(n^2)\)。

使用优先队列 \(\mathrm{priority\_queue}\) 模拟小根堆(需要重定义)实现堆优化,每次查找最小值时间复杂度减小至 \(O(\log n)\)。

时间复杂度 \(O(n \log n)\)

完整的参考代码中采用的是 \(\mathrm{pair<int,int>}\) 作为优先队列节点的比较容器,这种容器相当于包含两个参量的结构体,

比较顺序是:先比较第一个参量 \((\mathrm{first})\) ,再比较第二个参量 \((\mathrm{second})\) 。

当然也可以采用自定义结构体的方式,重载运算符后进行比较,下面也提供了三种较为常用的参考方法。

参考代码

#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+5;
int n, m, s, dis[N];
priority_queue <pair<int, int>, vector <pair<int, int> >, greater<pair<int, int> > > Q;
vector <pair<int, int> > e[N]; inline int read()
{
int X=0; bool flag=1; char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') flag=0; ch=getchar();}
while(ch>='0'&&ch<='9') {X=(X<<1)+(X<<3)+ch-'0'; ch=getchar();}
if(flag) return X;
return ~(X-1);
}
void Dijkstra()
{
dis[s] = 0;
Q.push(make_pair(0, s));
while (!Q.empty()){
int a = Q.top().second, c = Q.top().first;
Q.pop();
if (c != dis[a]) continue;
for (int i=0; i<e[a].size(); i++){
int b = e[a][i].second;
if (dis[b] > dis[a]+e[a][i].first){
dis[b] = dis[a]+e[a][i].first;
Q.push(make_pair(dis[b], b));
}
}
}
}
int main()
{
int a, b, c;
n=read(), m=read(), s=read();
for (int i=0; i<m; ++i) {
a=read(), b=read(), c=read();
e[a].push_back(make_pair(c, b));
}
for (int i=1; i<=n; ++i) dis[i] = INF;
Dijkstra();
for (int i=1; i<=n; ++i) printf("%d ", dis[i]);
putchar('\n');
return 0;
}

自定义结构体的方法

方法1

由于优先队列 \(\mathrm{priority\_queue}\) 默认为大根堆,因此在结构体内部将“小于号”重载为“大于比较”即可,这是最简单的定义方法。

但是由于大小比较的不统一,往往容易引入其他由于混淆产生的错误或者带来检查上的困难。因此如这个结构体需要在代码内重复利用到的,则不推荐使用这种方法。

struct node{
int c, a;
bool operator < (const node &A) const {
return c > A.c;//注意此处为大于号!
}
}; priority_queue <node> Q;
//与priority_queue <node, vector<node>, less<node> > Q;等价
//其中std::less<Type>()为内置的小于比较类

方法2

在结构体内部将重载“大于号”,并在 \(\mathrm{priority\_queue}\) 中采用 \(std::greater<Type>()\) (大于比较类)来成为小根堆,这样在大小比较上是统一的。

struct node{
int c, a;
bool operator > (const node &A) const {
return c > A.c;
}
}; priority_queue <node, vector<node>, greater<node> > Q;

方法3

用自定义类来实现比较。

struct node{
int c, a;
};
struct cmp{
//操作符重载函数,必须是写()
bool operator () (const node &A, const node &B){
return A.c > B.c;//小根堆
}
};
priority_queue <node, vector<node>, cmp> Q;

谢谢支持!

【模板】单源最短路径(Dijkstra)/洛谷P4779的更多相关文章

  1. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  2. [数据结构与算法-15]单源最短路径(Dijkstra+SPFA)

    单源最短路径 问题描述 分别求出从起点到其他所有点的最短路径,这次主要介绍两种算法,Dijkstra和SPFA.若无负权优先Dijkstra算法,存在负权选择SPFA算法. Dijkstra算法 非负 ...

  3. 单源最短路径——dijkstra算法

    dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的 ...

  4. 单源最短路径 dijkstra算法实现

    本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图.而且连通,有向图,不连通图的做法相似. 算法简述: 首先确定"单源"的源.假设是第0个顶点. 维护三个数组 ...

  5. matlab练习程序(单源最短路径Dijkstra)

    图的相关算法也算是自己的一个软肋了,当年没选修图论也是一大遗憾. 图像处理中,也有使用图论算法作为基础的相关算法,比如图割,这个算法就需要求最大流.最小割.所以熟悉一下图论算法对于图像处理还是很有帮助 ...

  6. 洛谷P3371单源最短路径Dijkstra堆优化版及优先队列杂谈

    其实堆优化版极其的简单,只要知道之前的Dijkstra怎么做,那么堆优化版就完全没有问题了. 在做之前,我们要先学会优先队列,来完成堆的任务,下面盘点了几种堆的表示方式. priority_queue ...

  7. 洛谷P3371单源最短路径Dijkstra版(链式前向星处理)

    首先讲解一下链式前向星是什么.简单的来说就是用一个数组(用结构体来表示多个量)来存一张图,每一条边的出结点的编号都指向这条边同一出结点的另一个编号(怎么这么的绕) 如下面的程序就是存链式前向星.(不用 ...

  8. 【洛谷 p3371】模板-单源最短路径(图论)

    题目:给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 解法:spfa算法. 1 #include<cstdio> 2 #include<cstdlib> 3 #in ...

  9. [模板]单源最短路径(Dijkstra)

    如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 主要还是再打一遍最短路,这种算法我用的不多... #include<bits/stdc++.h> using namesp ...

  10. luogu3371 【模板】单源最短路径 dijkstra堆优化

    #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> ...

随机推荐

  1. 2021.8.16考试总结[NOIP模拟41]

    T1 你相信引力吗 肯定是单调栈维护.但存在重复值,还是个环,不好搞. 发现取区间时不会越过最大值,因此以最大值为断点将环断为序列.在栈里维护当前栈中有多少个与当前元素相等的元素,小分类讨论一下. 最 ...

  2. matplotlib.legend()函数用法

    用的较多,作为记录 legend语法参数如下: matplotlib.pyplot.legend(*args, **kwargs) 几个暂时主要用的参数: (1)设置图例位置 使用loc参数 plt. ...

  3. WPF进阶技巧和实战08-依赖属性与绑定03

    数据提供者 在大多数的代码中,都是通过设置元素的DataContext属性或者列表控件的ItemsSource属性,从而提供顶级的数据源.当数据对象是通过另一个类构造时,可以有其他选择. 一种是作为窗 ...

  4. 二叉树中和为某一值的路径 牛客网 程序员面试金典 C++ Python

    二叉树中和为某一值的路径 牛客网 程序员面试金典 题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一 ...

  5. 手把手教你学Dapr - 4. 服务调用

    上一篇:手把手教你学Dapr - 3. 使用Dapr运行第一个.Net程序 介绍 通过使用服务调用,您的应用程序可以使用标准的gRPC或HTTP协议与其他应用程序可靠.安全地通信. 为什么不直接用Ht ...

  6. SpringMVC配置知识点

    SpringMVC原生知识点 通过idea新建一个SpringMVC的Project(新建普通的项目就行了) 填写完之后Finish就行了 (实际开发不会这么用,这么做是为了理解!) 然后就是Spri ...

  7. Qt 项目管理文件(.pro) 详解

    项目文件目录树 在 Qt Creator 中新建一个 Widget Application 项目 samp2_1,在选择窗口基类的页面选择 QWidget 作为窗体基类,并选中"Genera ...

  8. 自定义实例默认值 axios.create(config)

    自定义实例默认值 axios.create(config) 根据指定配置创建一个新的axios,也就就每个新 axios 都有自己的配置 新 axios只是没有取消请求和批量发请求的方法,其它所有语法 ...

  9. [python]django rest framework写POST和GET接口

    版本声明 python3.6.5 Django-2.0.6 djangorestframework-3.8.2 mysqlclient-1.3.12 1.写一个登录接口,不多说,直接上代码 login ...

  10. 基于ABP开发框架的技术点分析和项目快速开发实现

    在我们开发各种项目应用的时候,往往都是基于一定框架进行,同时配合专用的代码生成工具,都是为了快速按照固定模式开发项目,事半功倍,本篇随笔对基于ABP开发框架的技术点进行分析和ABP框架项目快速开发实现 ...