自闭的一批....为什么斜率优化能这么自闭。

首先看到这个题的第一想法一定是按照一个维度进行排序。

那我们不妨直接按照\(h_i\)排序。

我们令\(dp[i]\)表示到了第\(i\)个矩形的答案是多少。

之后我们会发现,对于\(dp[i]\)的转移

\[dp[i]=dp[j-1]+h[j]*mn[j][i]
\]

其中\(mn[j][i]\)表示\(j到i\)的最小值。

qwq我们发现对于一个含有最值的柿子,他没法转移qwq

那我们不妨仔细考虑一下。

对于一个排在\(i\)后面的矩阵\(j\),如果他的\(w\)小于前缀\(w_{max}\),那么他就可以直接和之前某个矩阵合买了。

那这样就能去掉很多没有用的矩阵

剩下的矩阵就是一个\(h\)单调不升,\(w\)单调不降的序列。

那么这时候

\(dp[i]=max(dp[j-1]+h[j]*w[i])\)

经过推柿子

\[\frac{dp[j-1]-dp[k-1]}{h[j]-h[k]} > -w[i]
\]

然后直接斜率优化就可以qwq

这里有两个要注意的地方!!!!!!

首先,我们要比较的是当前的\(w\)和前缀\(w\)的最大值,而不能比较他的和上一个矩阵(因为上一个矩阵可能也是被完全替代的)。

其次!因为\(h[j]-h[k]<0\) 所以移项要改变!符号!

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
struct Node{
int h,w;
};
Node a[maxn];
int dp[maxn];
int n;
struct Point{
int x,y;
};
Point q[maxn];
int chacheng(Point x,Point y)
{
return x.x*y.y-x.y*y.x;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=k.x-i.x;
x.y=k.y-i.y;
y.x=k.x-j.x;
y.y=k.y-j.y;
if (chacheng(x,y)>=0) return true;
return false;
}
int head=1,tail=0;
void push(Point x)
{
while(tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while (tail>=head+1 && q[head+1].y-q[head].y<lim*(q[head+1].x-q[head].x)) head++;
}
bool cmp(Node a,Node b)
{
if(a.h==b.h) return a.w>b.w;
return a.h>b.h;
}
signed main()
{
n=read();
for (int i=1;i<=n;i++) a[i].w=read(),a[i].h=read();
sort(a+1,a+1+n,cmp);
push((Point){a[1].h,0});
dp[1]=a[1].w*a[1].h;
int mx = a[1].w;
for (int i=2;i<=n;i++)
{
if (a[i].w<=mx)
{
dp[i]=dp[i-1];
continue;
}
mx=max(mx,a[i].w);
dp[i]=dp[i-1]+a[i].w*a[i].h;
pop((-1ll)*a[i].w);
Point now = q[head];
dp[i]=min(now.y+a[i].w*now.x,dp[i]);
push((Point){a[i].h,dp[i-1]});
}
cout<<dp[n];
return 0;
}

洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)的更多相关文章

  1. 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告

    P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...

  2. 『土地征用 Land Acquisition 斜率优化DP』

    斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer Jo ...

  3. 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)

    洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...

  4. 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(斜率优化)

    题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比如约翰并购一块3 ...

  5. Luogu 2900 [USACO08MAR]土地征用Land Acquisition

    斜率优化dp. 首先发现如果存在$x$和$y$使得$len(x) \geq len(y)$并且$wid(x) \geq wid(y)$,那么$y$直接不考虑就好了,因为在买$x$的时候就把$y$顺便带 ...

  6. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  7. 洛谷P2365/5785 任务安排 题解 斜率优化DP

    任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 ...

  8. 洛谷3648 [APIO2014]序列分割(斜率优化+dp)

    首先对于这个题目. qwq 存在一个性质就是,最终的答案只跟你的分割的位置有关,而和顺序无关. 举一个小栗子 \(a\ b\ c\) 将这个东西分成两块. 如果我们先分割\(ab\)之间的话,\(an ...

  9. 洛谷2120 [ZJOI2007]仓库建设(斜率优化dp)

    感觉和锯木厂那个题很类似的. 其实这个题还那个题唯一的区别就是\(dp\)转移式子中的\(f\)变成了\(g\) qwq不想多说了 直接看我的前一篇题解吧qwq #include<iostrea ...

随机推荐

  1. 在按照ROS官方步骤操作,同时用Git管理整个过程,git clone的新catkin_ws报错: catkin_package() include dir 'include' does not exist relative to

    在按照ROS官方步骤操作,同时用Git管理整个过程,git clone的新catkin_ws报错如下: CMake Error at /opt/ros/kinetic/share/catkin/cma ...

  2. 移动端ios上下滑动翻页事件失效

    移动端开发过程中,在添加上下滑动事件时候,引入了最常用的移动端库zepto.js及其touch模块,有一种现象,安卓的手机没有问题,上下滑动翻页很正常 :但是到了ios上面,好啊,上下滑动会出现弹性滚 ...

  3. Kafka内外网访问

    本文介绍了Kafka内外网访问的设置. kafka的两个配置listeners和advertised.listeners listeners kafka监听的网卡的ip,假设你机器上有两张网卡,内网1 ...

  4. RabbitMQ详解(一)——

    RabbitMQ详解(一)-- https://www.cnblogs.com/liuwenwu9527/p/11989216.html https://www.cnblogs.com/ideal-2 ...

  5. Shiro02

    Shiro认证 Pom依赖 <dependency> <groupId>org.apache.shiro</groupId> <artifactId>s ...

  6. JDK7u21反序列化详解

    目录 前言 环境 倒序分析 TemplatesImpl AnnotationInvocationHandler HashMap 总结 前言 听说jdk7u21的反序列化涉及的知识量很多,很难啃,具体来 ...

  7. SprinBoot-SpringData-整合

    目录 SpringData 整合JDBC JDBCTemplate 整合Druid 配置数据源 配置Druid数据源监控 整合MyBatis 整合测试 整合Redis 测试整合 序列化配置 自定义re ...

  8. clickonce的密钥到期问题处理

    最近clickonce的密钥到期了,在网上找了些文章用来修改密钥的到期时间,已成功生成新密钥,好不好使暂时未测. 在此小结一下,以备参考: 1.在原密钥所属电脑上cmd执行如下命令 renewcert ...

  9. Linux之crontab命令

    简介 通过crontab 命令,我们可以在固定的间隔时间执行指定的系统指令或 shell 脚本.时间间隔的单位可以 是分钟.小时.日.月.周及以上的任意组合.这个命令非常适合周期性的日志分析或数据备份 ...

  10. logstash-input-jdbc配置说明

    Logstash由三个组件构造成,分别是input.filter以及output.我们可以吧Logstash三个组件的工作流理解为:input收集数据,filter处理数据,output输出数据.至于 ...