洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)
自闭的一批....为什么斜率优化能这么自闭。
首先看到这个题的第一想法一定是按照一个维度进行排序。
那我们不妨直接按照\(h_i\)排序。
我们令\(dp[i]\)表示到了第\(i\)个矩形的答案是多少。
之后我们会发现,对于\(dp[i]\)的转移
\]
其中\(mn[j][i]\)表示\(j到i\)的最小值。
qwq我们发现对于一个含有最值的柿子,他没法转移qwq
那我们不妨仔细考虑一下。
对于一个排在\(i\)后面的矩阵\(j\),如果他的\(w\)小于前缀\(w_{max}\),那么他就可以直接和之前某个矩阵合买了。
那这样就能去掉很多没有用的矩阵
剩下的矩阵就是一个\(h\)单调不升,\(w\)单调不降的序列。
那么这时候
\(dp[i]=max(dp[j-1]+h[j]*w[i])\)
经过推柿子
\]
然后直接斜率优化就可以qwq
这里有两个要注意的地方!!!!!!
首先,我们要比较的是当前的\(w\)和前缀\(w\)的最大值,而不能比较他的和上一个矩阵(因为上一个矩阵可能也是被完全替代的)。
其次!因为\(h[j]-h[k]<0\) 所以移项要改变!符号!
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
struct Node{
int h,w;
};
Node a[maxn];
int dp[maxn];
int n;
struct Point{
int x,y;
};
Point q[maxn];
int chacheng(Point x,Point y)
{
return x.x*y.y-x.y*y.x;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=k.x-i.x;
x.y=k.y-i.y;
y.x=k.x-j.x;
y.y=k.y-j.y;
if (chacheng(x,y)>=0) return true;
return false;
}
int head=1,tail=0;
void push(Point x)
{
while(tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while (tail>=head+1 && q[head+1].y-q[head].y<lim*(q[head+1].x-q[head].x)) head++;
}
bool cmp(Node a,Node b)
{
if(a.h==b.h) return a.w>b.w;
return a.h>b.h;
}
signed main()
{
n=read();
for (int i=1;i<=n;i++) a[i].w=read(),a[i].h=read();
sort(a+1,a+1+n,cmp);
push((Point){a[1].h,0});
dp[1]=a[1].w*a[1].h;
int mx = a[1].w;
for (int i=2;i<=n;i++)
{
if (a[i].w<=mx)
{
dp[i]=dp[i-1];
continue;
}
mx=max(mx,a[i].w);
dp[i]=dp[i-1]+a[i].w*a[i].h;
pop((-1ll)*a[i].w);
Point now = q[head];
dp[i]=min(now.y+a[i].w*now.x,dp[i]);
push((Point){a[i].h,dp[i-1]});
}
cout<<dp[n];
return 0;
}
洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)的更多相关文章
- 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告
P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...
- 『土地征用 Land Acquisition 斜率优化DP』
斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer Jo ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(斜率优化)
题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比如约翰并购一块3 ...
- Luogu 2900 [USACO08MAR]土地征用Land Acquisition
斜率优化dp. 首先发现如果存在$x$和$y$使得$len(x) \geq len(y)$并且$wid(x) \geq wid(y)$,那么$y$直接不考虑就好了,因为在买$x$的时候就把$y$顺便带 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P2365/5785 任务安排 题解 斜率优化DP
任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 ...
- 洛谷3648 [APIO2014]序列分割(斜率优化+dp)
首先对于这个题目. qwq 存在一个性质就是,最终的答案只跟你的分割的位置有关,而和顺序无关. 举一个小栗子 \(a\ b\ c\) 将这个东西分成两块. 如果我们先分割\(ab\)之间的话,\(an ...
- 洛谷2120 [ZJOI2007]仓库建设(斜率优化dp)
感觉和锯木厂那个题很类似的. 其实这个题还那个题唯一的区别就是\(dp\)转移式子中的\(f\)变成了\(g\) qwq不想多说了 直接看我的前一篇题解吧qwq #include<iostrea ...
随机推荐
- TCP模拟QQ聊天功能
需求: 模拟qq聊天功能:实现客户端与服务器(一对一)的聊天功能,客户端首先发起聊天,输入的内容在服务器端和客户端显示,然后服务器端也可以输入信息,同样信息在客户端和服务端显示. 提示: 客户端 1) ...
- ES6扩展——正则扩展(u、y修饰符)
//下面三行代码效果一样 //全局匹配开头为a的 const regexp1 = /^a/g; const regexp2 = new RegExp('a','g'); const regexp3 = ...
- linux centos7 移动文件到指定目录
2021-08-26 在 centos7 环境下怎么移动一个文件到其他的目录下呢? 使用命令 mv 文件名 指定目录 即可完成该操作. 那么怎么将一个文件夹下的内容移动到另一个文件夹下呢?比如有时 ...
- kubernetes 使用 PV 和 PVC 管理数据存储
文章链接 容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题.首先,当容器崩溃时,kubelet 会重启它,但是容器中的文件将丢失--容器以干净的状态(镜像最初的状态)重 ...
- Redis的安装、基本使用以及与SpringBoot的整合
1.概述 Redis 是现在很流行的一个 NoSql 数据库,每秒读取可以达到10万次,能够将数据持久化,支持多种数据结构,容灾性强,易扩展,常用于项目的缓存中间件. 今天我们就来聊聊关于Redis的 ...
- Mysql - You can't specify target table '表名' for update in FROM clause 错误解决办法
背景 在MySQL中,写SQL语句的时候 ,可能会遇到 You can't specify target table '表名' for update in FROM clause 这样的错误 错误含义 ...
- PPPoE技术白皮书(H3C)
PPPoE技术白皮书 关键词:PPP,Ethernet,PPPoE 摘要:PPPoE是一种通过一个远端接入设备为以太网上的主机提供接入服务,并可以对接入的每个主机实现控制和计费的技术.本文介绍了PPP ...
- throws声明异常中断式处理异常
1.throws 编译期异常,一直往上抛最后是JVM处理(打印并中断程序) 2.声明多个或者直接声明父类
- wrap()包裹被选元素的内容
<!doctype html><html><head><meta charset="utf-8"><title>修改代码 ...
- 【PHP数据结构】链表的相关逻辑操作
链表的操作相对顺序表(数组)来说就复杂了许多.因为 PHP 确实已经为我们解决了很多数组操作上的问题,所以我们可以很方便的操作数组,也就不用为数组定义很多的逻辑操作.比如在 C 中,数组是有长度限制的 ...