洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)
自闭的一批....为什么斜率优化能这么自闭。
首先看到这个题的第一想法一定是按照一个维度进行排序。
那我们不妨直接按照\(h_i\)排序。
我们令\(dp[i]\)表示到了第\(i\)个矩形的答案是多少。
之后我们会发现,对于\(dp[i]\)的转移
\]
其中\(mn[j][i]\)表示\(j到i\)的最小值。
qwq我们发现对于一个含有最值的柿子,他没法转移qwq
那我们不妨仔细考虑一下。
对于一个排在\(i\)后面的矩阵\(j\),如果他的\(w\)小于前缀\(w_{max}\),那么他就可以直接和之前某个矩阵合买了。
那这样就能去掉很多没有用的矩阵
剩下的矩阵就是一个\(h\)单调不升,\(w\)单调不降的序列。
那么这时候
\(dp[i]=max(dp[j-1]+h[j]*w[i])\)
经过推柿子
\]
然后直接斜率优化就可以qwq
这里有两个要注意的地方!!!!!!
首先,我们要比较的是当前的\(w\)和前缀\(w\)的最大值,而不能比较他的和上一个矩阵(因为上一个矩阵可能也是被完全替代的)。
其次!因为\(h[j]-h[k]<0\) 所以移项要改变!符号!
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
struct Node{
int h,w;
};
Node a[maxn];
int dp[maxn];
int n;
struct Point{
int x,y;
};
Point q[maxn];
int chacheng(Point x,Point y)
{
return x.x*y.y-x.y*y.x;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=k.x-i.x;
x.y=k.y-i.y;
y.x=k.x-j.x;
y.y=k.y-j.y;
if (chacheng(x,y)>=0) return true;
return false;
}
int head=1,tail=0;
void push(Point x)
{
while(tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while (tail>=head+1 && q[head+1].y-q[head].y<lim*(q[head+1].x-q[head].x)) head++;
}
bool cmp(Node a,Node b)
{
if(a.h==b.h) return a.w>b.w;
return a.h>b.h;
}
signed main()
{
n=read();
for (int i=1;i<=n;i++) a[i].w=read(),a[i].h=read();
sort(a+1,a+1+n,cmp);
push((Point){a[1].h,0});
dp[1]=a[1].w*a[1].h;
int mx = a[1].w;
for (int i=2;i<=n;i++)
{
if (a[i].w<=mx)
{
dp[i]=dp[i-1];
continue;
}
mx=max(mx,a[i].w);
dp[i]=dp[i-1]+a[i].w*a[i].h;
pop((-1ll)*a[i].w);
Point now = q[head];
dp[i]=min(now.y+a[i].w*now.x,dp[i]);
push((Point){a[i].h,dp[i-1]});
}
cout<<dp[n];
return 0;
}
洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)的更多相关文章
- 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告
P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...
- 『土地征用 Land Acquisition 斜率优化DP』
斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer Jo ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(斜率优化)
题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比如约翰并购一块3 ...
- Luogu 2900 [USACO08MAR]土地征用Land Acquisition
斜率优化dp. 首先发现如果存在$x$和$y$使得$len(x) \geq len(y)$并且$wid(x) \geq wid(y)$,那么$y$直接不考虑就好了,因为在买$x$的时候就把$y$顺便带 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P2365/5785 任务安排 题解 斜率优化DP
任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 ...
- 洛谷3648 [APIO2014]序列分割(斜率优化+dp)
首先对于这个题目. qwq 存在一个性质就是,最终的答案只跟你的分割的位置有关,而和顺序无关. 举一个小栗子 \(a\ b\ c\) 将这个东西分成两块. 如果我们先分割\(ab\)之间的话,\(an ...
- 洛谷2120 [ZJOI2007]仓库建设(斜率优化dp)
感觉和锯木厂那个题很类似的. 其实这个题还那个题唯一的区别就是\(dp\)转移式子中的\(f\)变成了\(g\) qwq不想多说了 直接看我的前一篇题解吧qwq #include<iostrea ...
随机推荐
- IDEA第三方jar包引入的三种方法(专治IDEA2020.1.1的坑)
一: 二: 三:
- 在EXCEL中,判断同列数据重复,并标识出来
推荐方法:建立辅助列,查找B列数据是否重复.=IF(COUNTIF(B:B,B1)>1,"重复","")按住公式单元格右下角实心十字,向下拖拽复制公式.= ...
- MySQL 事务和锁
1. 事务 1.1 什么是事务? 1.2 事务的特性:ACID 1.3 事务语句 1.4 事务的隔离级别 1.5 锁 1.6 事务隔离解决并发问题 2. 死锁 2.1 场景示例 2.2 死锁调优 3. ...
- 从零开始实现简单 RPC 框架 7:网络通信之自定义协议(粘包拆包、编解码)
当 RPC 框架使用 Netty 通信时,实际上是将数据转化成 ByteBuf 的方式进行传输. 那如何转化呢?可不可以把 请求参数 或者 响应结果 直接无脑序列化成 byte 数组发出去? 答:直接 ...
- DSP开发笔记一
前言 本笔记首先对DSP的特点及其选型进行了描述,然后重点记录DSP开发环境的搭建及基础工程示例,对为DSP开发新手有一定的指导作用. 1. DSP简介 1.1 主要特点 在一个指令周期内可完成一 ...
- jQuery判断多种数据类型
1.判断是否为数组类型 var obj=[0]; alert((typeof obj=='object')&&obj.constructor==Array) 2. 判断是否为字符串 ...
- HTML+CSS+JS设计注册页面
HTML实战--设计一个个人信息填写界面 应用的技术:HTML+CSS+JS CSS和JS是套用的模板,主要练习了表单的验证和正则表达式的使用 效果图: 代码: <!DOCTYPE html&g ...
- php学习记录,使用script脚本
echo "<script>alert()</script>"; 原来还能这么用,之前以为echo就是普通的用来打印 同时还可以在script标签下使用lo ...
- PTA 面向对象程序设计 6-3 面积计算器(函数重载)
6-3 面积计算器(函数重载) 实现一个面积计算器,它能够计算矩形或长方体的面积. 函数接口定义: int area(int x, int y); int area(int x, int y, int ...
- PHP的DBA扩展学习
今天我们讲的 DBA 并不是传统的数据库管理员那个 DBA ,而是一个 PHP 中的巴克利风格数据库的扩展.巴克利风格数据库其实就是我们常说的键值对形式的 K/V 数据库.就像我们平常用得非常多的 m ...