POJ 2002 二分 计算几何
根据正方形对角的两顶点求另外两个顶点公式:
x2 = (x1+x3-y3+y1)/2; y2 = (x3-x1+y1+y3)/2;
x4= (x1+x3+y3-y1)/2; y4 = (-x3+x1+y1+y3)/2;
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1000+5;
struct Node
{
int x,y;
bool operator<(const Node& rhs)const
{
return x<rhs.x || (x==rhs.x && y<rhs.y);
}
}nodes[maxn]; int main()
{
int n;
while(scanf("%d",&n)==1 && n)
{
int ans=0;//正方形个数
for(int i=0;i<n;++i)
scanf("%d%d",&nodes[i].x,&nodes[i].y);
sort(nodes,nodes+n); for(int i=0;i<n;++i)
for(int j=i+1;j<n;++j)
{
Node tmp;//tmp作为正方形的第3或4个点
tmp.x=nodes[i].x+nodes[i].y-nodes[j].y;
tmp.y=nodes[i].y+nodes[j].x-nodes[i].x;
if(!binary_search(nodes,nodes+n,tmp)) continue;
tmp.x=nodes[j].x+nodes[i].y-nodes[j].y;
tmp.y=nodes[j].y+nodes[j].x-nodes[i].x;
if(!binary_search(nodes,nodes+n,tmp)) continue;
++ans;
}
printf("%d\n",ans/2);
}
return 0;
}
POJ 2002 二分 计算几何的更多相关文章
- POJ - 2018 二分+单调子段和
依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...
- POJ - 1905 Expanding Rods(二分+计算几何)
http://poj.org/problem?id=1905 题意 一根两端固定在两面墙上的杆,受热后变弯曲.求前后两个状态的杆的中点位置的距离 分析 很明显需要推推公式. 由②的限制条件来二分角度, ...
- POJ 2002 Squares【值得摸索的一道二分+点旋转】
id=2002">Squares 很好的一道二分,事实上本来我是没有思路的,看了基神的题解之后才似乎明确了点. 题意:给出最多有1000个点,问这些点能够组成多少个正方形 分析:先想想 ...
- poj 2002 Squares 几何二分 || 哈希
Squares Time Limit: 3500MS Memory Limit: 65536K Total Submissions: 15137 Accepted: 5749 Descript ...
- POJ 2002 Squares 数学 + 必须hash
http://poj.org/problem?id=2002 只能说hash比二分快很多.随便一个hash函数都可以完爆二分. 判断是否存在正方形思路如下: 1.枚举任意两个点,作为正方形的一条边,那 ...
- poj 3621 二分+spfa判负环
http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i], ...
- POJ 2549 二分+HASH
题目链接:http://poj.org/problem?id=2002 题意:给定一个n个数字组成的序列,然后求出4个数使得a+b+c=d,求d的最大值.其中a,b,c,d要求是给定序列的数,并且不能 ...
- POJ 2002 统计正方形 HASH
题目链接:http://poj.org/problem?id=2002 题意:给定n个点,问有多少种方法可以组成正方形. 思路:我们可以根据两个点求出对应正方形[有2个一个在两点左边,一个在两点右边] ...
- POJ 3061 (二分+前缀和or尺取法)
题目链接: http://poj.org/problem?id=3061 题目大意:找到最短的序列长度,使得序列元素和大于S. 解题思路: 两种思路. 一种是二分+前缀和.复杂度O(nlogn).有点 ...
随机推荐
- STM32 SWD下载口无法下载的原因和解决办法
1.SWD的下载口在程序中被禁用,IO口被设置为普通IO口 2.芯片被锁,原因有可能是程序执行了不正确的访问导致芯片被锁 3.供电不正常 4.SWD烧了 解锁原因: 在下载程序的时候有时候会发生错误导 ...
- linux 进程信号集合 sigset_t -(转自linengeir的专栏)
sigset_t 号集及信号集操作函数:信号集被定义为一种数据类型: typedef struct { unsigned long sig[_NSIG_WORDS]: } sigset_t 信号集用来 ...
- MongoDB(8)- 文档删除操作
删除方法 db.collection.deleteOne() 删除单条文档 db.collection.deleteMany() 删除多条文档 db.collection.remove() 删除单条或 ...
- [leetcode] 45. 跳跃游戏 II(Java)(动态规划)
45. 跳跃游戏 II 动态规划 此题可以倒着想. 看示例: [2,3,1,1,4] 我们从后往前推,对于第4个数1,跳一次 对于第3个数1,显然只能跳到第4个数上,那么从第3个数开始跳到最后需要两次 ...
- stream的groupby出来的map是有顺序的map
stream分组后的map是有序map List<RedisInstanceTypeDto> typeDtoList = ModuleHelper.mapAll(redisInstance ...
- 向量算子优化Vector Operation Optimization
向量算子优化Vector Operation Optimization 查看MATLAB命令View MATLAB Command 示例显示Simulink编码器 ,将生成向量的块输出,设置为标量,优 ...
- 解决:ImportError: DLL load failed while importing _sqlite3: 找不到指定的模块。
Django框架学习第一步,创建一个Django工程. 本次采用的是创建虚拟环境来创建Django工程.本地解释器采用anaconda ,内置Python3.8 在pycharm中报错: 内容如下:I ...
- Java线程池底层源码分享和相关面试题(持续更新)
线程池各个参数讲解 public ThreadPoolExecutor(int corePoolSize, //线程池核心工作线程数量,比如newFixedThreadPool中可以自定义的线程数量就 ...
- 基于Android平台的图书管理系统的制作(4)
讲解完学生.职员.书籍这些基础层之后,我们可以来了解一些应用层的活动. 新书上架.借阅排行.黑名单.图书馆介绍.图书馆新闻. 新书上架是查询数据库里的Book表,将最近注册的五本书的基本信息(若图书馆 ...
- UF_EVAL 曲线或边分析
Open C UF_EVAL_ask_arc 圆形曲线或边分析,得到曲线或边的信息UF_EVAL_ask_ellipse 椭圆曲线或边分析,得到曲线或边的信息UF_EVAL_ask_hyperbo ...