[Matlab]求解线性方程组
转自:http://silencethinking.blog.163.com/blog/static/911490562008928105813169/
AX=B或XA=B
在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如:
- X=A\B表示求矩阵方程AX=B的解;
- X=B/A表示矩阵方程XA=B的解。
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。
如果矩阵A不是方阵,其维数是m×n,则有:
- m=n 恰定方程,求解精确解;
- m>n 超定方程,寻求最小二乘解;
- m<n 不定方程,寻求基本解,其中至多有m个非零元素。
针对不同的情况,MATLAB将采用不同的算法来求解。
恰定方程组
恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:
Ax=b
其中A是方阵,b是一个列向量;
在线性代数教科书中,最常用的方程组解法有:
- 利用cramer公式来求解法;
- 利用矩阵求逆解法,即x=A-1b;
- 利用gaussian消去法;
- 利用lu法求解。
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。前三种解法的真正意义是在其理论上,而不是实际的数值计算。MATLAB中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。
在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。
如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。
注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时。另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。
超定方程组
对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;
例 求解超定方程组
A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]
A=
2 -1 3
3 1 -5
4 -1 1
1 3 -13
b=[3 0 3 -6]’;
rank(A)
ans=
3
x1=A\b
x1=
1.0000
2.0000
1.0000
x2=pinv(A)*b
x2=
1.0000
2.0000
1.0000
A*x1-b
ans=
1.0e-014
-0.0888
-0.0888
-0.1332
0
可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。
欠定方程组
欠定方程组未知量个数多于方程个数,但理论上有无穷个解。MATLAB将寻求一个基本解,其中最多只能有m个非零元素。特解由列主元qr分解求得。
例 解欠定方程组
A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]
A=
1 -2 1 1
1 -2 1 -1
1 -2 1 -1
1 -2 1 5
b=[1 -1 5]’
x1=A\b
Warning:Rank deficient,rank=2 tol=4.6151e-015
x1=
0
-0.0000
0
1.0000
x2=pinv(A)*b
x2=
0
-0.0000
0.0000
1.0000
方程组的非负最小二乘解
在某些条件下,所求的线性方程组的解出现负数是没有意义的。虽然方程组可以得到精确解,但却不能取负值解。在这种情况下,其非负最小二乘解比方程的精确解更有意义。在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:
- X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;
- X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为TOL=max(size(A))norm(A,1)eps,矩阵的-1范数越大,求解的误差越大;
- [X,W]=nnls(A,b) 当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。
例 求方程组的非负最小二乘解
A=[3.4336 -0.5238 0.6710
-0.5238 3.2833 -0.7302
0.6710 -0.7302 4.0261];
b=[-1.000 1.5000 2.5000];
[X,W]=nnls(A,b)
X=
0
0.6563
0.6998
W=
-3.6820
-0.0000
-0.0000
x1=A\b
x1=
-0.3569
0.5744
0.7846
A*X-b
ans=
1.1258
0.1437
-0.1616
A*x1-b
ans=
1.0e-0.15
-0.2220
0.4441
0
[Matlab]求解线性方程组的更多相关文章
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- matlab 求解线性方程组之范数
1.赋范线性空间和内积空间 在线性代数的初级教材里,一般是在向量空间中定义内积,然后再由内积来导出范数,比如在n维实向量空间中: |x||=√<x,x> 在线性代数的高级教材中,一般是将内 ...
- matlab中求解线性方程组的rref函数
摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det( ...
- 【原创】开源Math.NET基础数学类库使用(06)直接求解线性方程组
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- python 求解线性方程组
Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - ...
- Numpy库进阶教程(一)求解线性方程组
前言 Numpy是一个很强大的python科学计算库.为了机器学习的须要.想深入研究一下Numpy库的使用方法.用这个系列的博客.记录下我的学习过程. 系列: Numpy库进阶教程(二) 正在持续更新 ...
- matlab 求解线性规划问题
线性规划 LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为: minf(x):待最小化的目标函数(如果问题本 ...
- fslove - Matlab求解多元多次方程组
fslove - Matlab求解多元多次方程组 简介: 之前看到网上的一些资料良莠不齐,各种转载之类的,根本无法解决实际问题,所以我打算把自己的学到的总结一下,以实例出发讲解fsolve. 示例如下 ...
- 用Matlab求解微分方程
用Matlab求解微分方程 解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法 解析解 利用dsolve函数进行求解 syms x; s = dsolve('eq1,eq2,.. ...
随机推荐
- Cesium中级教程1 - 空间数据可视化(一)
Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ 本教程将教读者如何使用Cesium的实体(Entity)API绘 ...
- Sentry 开发者贡献指南 - 什么是 Scope, 什么是 Hub?
当一个事件被捕获并发送到 Sentry 时,SDK 会将该事件数据与来自当前 scope 的额外信息合并.SDK 通常会在框架集成中为您自动管理 scope,您无需考虑它们.但是,您应该知道 scop ...
- 在Excel VBA中写SQL,是一种什么体验
每每提到Excel办公自动化,我们脑海里能想到的就是公式.数据透视表.宏.VBA,这也是我们大部分人数据分析的进阶之路.当我们对于常用VBA技巧已经相当熟练后,往往会有一种"我的VBA知识够 ...
- 通俗易懂详解iptables
防火墙相关概念 从逻辑上讲.防火墙可以大体分为主机防火墙和网络防火墙. 主机防火墙:针对于单个主机进行防护. 网络防火墙:往往处于网络入口或边缘,针对于网络入口进行防护,服务于防火墙背后的本地局域网. ...
- python数据操作--8
转:https://www.tuicool.com/wx/MB7nieb 数据类型 整数, 浮点数, 字符串, 布林值(True,False) 列表(list), 不可变的列表 Tuple, 集合(没 ...
- 删除文件行末尾的^M符号方法
有时发现某些文件的末尾总是带有^M符号 cat /etc/hosts.allow|col -b > /etc/hosts.allow.old
- TCP长连接实践与挑战
点这里立即申请 本文介绍了tcp长连接在实际工程中的实践过程,并总结了tcp连接保活遇到的挑战以及对应的解决方案. 作者:字节跳动终端技术 --- 陈圣坤 概述 众所周知,作为传输层通信协议,TCP是 ...
- Vue3.2中的setup语法糖,保证你看的明明白白!
vue3.2 到底更新了什么? 根据原文内容的更新的内容主要有以下 5 块: 1.SSR:服务端渲染优化.@vue/server-renderer包加了一个ES模块创建, 与Node.js解耦,使在非 ...
- 学习JAVAWEB第九天
## XML: 1. 概念:Extensible Markup Language 可扩展标记语言 * 可扩展:标签都是自定义的. <user> <student> * 功能 * ...
- APschedule定时任务
APScheduler是Python的一个定时任务框架,可以很方便的满足用户定时执行或者周期执行任务的需求, 它提供了基于日期date.固定时间间隔interval .以及类似于Linux上的定时任务 ...