[Matlab]求解线性方程组
转自:http://silencethinking.blog.163.com/blog/static/911490562008928105813169/
AX=B或XA=B
在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如:
- X=A\B表示求矩阵方程AX=B的解;
- X=B/A表示矩阵方程XA=B的解。
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。
如果矩阵A不是方阵,其维数是m×n,则有:
- m=n 恰定方程,求解精确解;
- m>n 超定方程,寻求最小二乘解;
- m<n 不定方程,寻求基本解,其中至多有m个非零元素。
针对不同的情况,MATLAB将采用不同的算法来求解。
恰定方程组
恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:
Ax=b
其中A是方阵,b是一个列向量;
在线性代数教科书中,最常用的方程组解法有:
- 利用cramer公式来求解法;
- 利用矩阵求逆解法,即x=A-1b;
- 利用gaussian消去法;
- 利用lu法求解。
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。前三种解法的真正意义是在其理论上,而不是实际的数值计算。MATLAB中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。
在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。
如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。
注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时。另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。
超定方程组
对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;
例 求解超定方程组
A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]
A=
2 -1 3
3 1 -5
4 -1 1
1 3 -13
b=[3 0 3 -6]’;
rank(A)
ans=
3
x1=A\b
x1=
1.0000
2.0000
1.0000
x2=pinv(A)*b
x2=
1.0000
2.0000
1.0000
A*x1-b
ans=
1.0e-014
-0.0888
-0.0888
-0.1332
0
可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。
欠定方程组
欠定方程组未知量个数多于方程个数,但理论上有无穷个解。MATLAB将寻求一个基本解,其中最多只能有m个非零元素。特解由列主元qr分解求得。
例 解欠定方程组
A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]
A=
1 -2 1 1
1 -2 1 -1
1 -2 1 -1
1 -2 1 5
b=[1 -1 5]’
x1=A\b
Warning:Rank deficient,rank=2 tol=4.6151e-015
x1=
0
-0.0000
0
1.0000
x2=pinv(A)*b
x2=
0
-0.0000
0.0000
1.0000
方程组的非负最小二乘解
在某些条件下,所求的线性方程组的解出现负数是没有意义的。虽然方程组可以得到精确解,但却不能取负值解。在这种情况下,其非负最小二乘解比方程的精确解更有意义。在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:
- X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;
- X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为TOL=max(size(A))norm(A,1)eps,矩阵的-1范数越大,求解的误差越大;
- [X,W]=nnls(A,b) 当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。
例 求方程组的非负最小二乘解
A=[3.4336 -0.5238 0.6710
-0.5238 3.2833 -0.7302
0.6710 -0.7302 4.0261];
b=[-1.000 1.5000 2.5000];
[X,W]=nnls(A,b)
X=
0
0.6563
0.6998
W=
-3.6820
-0.0000
-0.0000
x1=A\b
x1=
-0.3569
0.5744
0.7846
A*X-b
ans=
1.1258
0.1437
-0.1616
A*x1-b
ans=
1.0e-0.15
-0.2220
0.4441
0
[Matlab]求解线性方程组的更多相关文章
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- matlab 求解线性方程组之范数
1.赋范线性空间和内积空间 在线性代数的初级教材里,一般是在向量空间中定义内积,然后再由内积来导出范数,比如在n维实向量空间中: |x||=√<x,x> 在线性代数的高级教材中,一般是将内 ...
- matlab中求解线性方程组的rref函数
摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det( ...
- 【原创】开源Math.NET基础数学类库使用(06)直接求解线性方程组
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- python 求解线性方程组
Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - ...
- Numpy库进阶教程(一)求解线性方程组
前言 Numpy是一个很强大的python科学计算库.为了机器学习的须要.想深入研究一下Numpy库的使用方法.用这个系列的博客.记录下我的学习过程. 系列: Numpy库进阶教程(二) 正在持续更新 ...
- matlab 求解线性规划问题
线性规划 LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为: minf(x):待最小化的目标函数(如果问题本 ...
- fslove - Matlab求解多元多次方程组
fslove - Matlab求解多元多次方程组 简介: 之前看到网上的一些资料良莠不齐,各种转载之类的,根本无法解决实际问题,所以我打算把自己的学到的总结一下,以实例出发讲解fsolve. 示例如下 ...
- 用Matlab求解微分方程
用Matlab求解微分方程 解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法 解析解 利用dsolve函数进行求解 syms x; s = dsolve('eq1,eq2,.. ...
随机推荐
- zookeeper,kafka,redis等分布式框架的主从同步策略
1 zookeeper选主机制 1.1 LeaderElection选举算法 选举线程由当前Server发起选举的线程担任,他主要的功能对投票结果进行统计,并选出推荐的Server.选举线程首先向所有 ...
- JDK原子操作类
在Atomic包里一共提供了13个类,属于4种类型的原子更新方式,分别是原子更新基本类型.原子更新数组.原子更新引用和原子更新属性(字段).Atomic包里的类基本都是使用Unsafe实现的包装类. ...
- JUC之文章整理以及汇总
JUC文章汇总 JUC部分将学习<JUC并发编程的艺术>和<尚硅谷-大厂必备技术之JUC并发编程>进行博客的整理,各文章中也会不断的完善和丰富. JUC概述 JUC的视频学习和 ...
- 比 WSL2 更香的是 Docker for windows!
今天给大家推荐一个软件 -- "Docker for windows": 如果你对WSL2,还不熟悉,可以关注公众号或小程序看看我之前推送过的两篇文章. Docker for wi ...
- 集合框架-工具类-Collections-排序
1 package cn.itcast.p2.toolclass.collections.demo; 2 3 import java.util.ArrayList; 4 import java.uti ...
- 不难懂-----redux
一.flux的缺陷 因为dispatcher和Store可以有多个互相管理起来特别麻烦 二.什么是redux 其实redux就是Flux的一种进阶实现.它是一个应用数据流框架,主要作用应用状态的管理 ...
- HTML(前端web)
目录 一:HTML前端 1.什么是前端? 2.什么是后端? 3.什么是HTML? 4.HTML不是什么? 5.前端的学习流程 6.BS架构 7.搭建服务器 简易(浏览器访问) 8.浏览器访问报错原因 ...
- HTTPS加密证书流程(2)
目录 一:HTTPS加密证书流程 二:证书对比 三:自签证书 1.(lb服务器负载均衡代理) 2.(创建CA证书 创建密码) 3.生成自签证书(公钥),同时去掉私钥的密码(Enter) 四:证书内容解 ...
- Ansible架构
- JVM调优方法
目 录 目 录 I 诠释JVM调优 1 第1章 JVM内存模型及垃圾收集算法 1 1.1 根据Java虚拟机规范,JVM将内存划分为 1 1.2 垃圾回收算法 1 第2章 内存泄漏及解决方法 2 2. ...