转自:http://silencethinking.blog.163.com/blog/static/911490562008928105813169/

AX=B或XA=B
在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如:

  • X=A\B表示求矩阵方程AX=B的解;
  • X=B/A表示矩阵方程XA=B的解。

对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。

如果矩阵A不是方阵,其维数是m×n,则有:

  • m=n 恰定方程,求解精确解;
  • m>n 超定方程,寻求最小二乘解;
  • m<n 不定方程,寻求基本解,其中至多有m个非零元素。

针对不同的情况,MATLAB将采用不同的算法来求解。

恰定方程组

恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:

Ax=b

其中A是方阵,b是一个列向量;

在线性代数教科书中,最常用的方程组解法有:

  • 利用cramer公式来求解法;
  • 利用矩阵求逆解法,即x=A-1b;
  • 利用gaussian消去法;
  • 利用lu法求解。

一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。前三种解法的真正意义是在其理论上,而不是实际的数值计算。MATLAB中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。
在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。
如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。
注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时。另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。

超定方程组

对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;

例 求解超定方程组


A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]
A=
2 -1 3
3 1 -5
4 -1 1
1 3 -13
b=[3 0 3 -6]’;
rank(A)
ans=
3
x1=A\b
x1=
1.0000
2.0000
1.0000
x2=pinv(A)*b
x2=
1.0000
2.0000
1.0000
A*x1-b
ans=
1.0e-014
-0.0888
-0.0888
-0.1332
0

可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。

欠定方程组

欠定方程组未知量个数多于方程个数,但理论上有无穷个解。MATLAB将寻求一个基本解,其中最多只能有m个非零元素。特解由列主元qr分解求得。

例 解欠定方程组


A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]
A=
1 -2 1 1
1 -2 1 -1
1 -2 1 -1
1 -2 1 5
b=[1 -1 5]’
x1=A\b
Warning:Rank deficient,rank=2 tol=4.6151e-015
x1=
0
-0.0000
0
1.0000
x2=pinv(A)*b
x2=
0
-0.0000
0.0000
1.0000

方程组的非负最小二乘解

在某些条件下,所求的线性方程组的解出现负数是没有意义的。虽然方程组可以得到精确解,但却不能取负值解。在这种情况下,其非负最小二乘解比方程的精确解更有意义。在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:

  • X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;
  • X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为TOL=max(size(A))norm(A,1)eps,矩阵的-1范数越大,求解的误差越大;
  • [X,W]=nnls(A,b) 当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。

例 求方程组的非负最小二乘解

A=[3.4336 -0.5238 0.6710
-0.5238 3.2833 -0.7302
0.6710 -0.7302 4.0261];
b=[-1.000 1.5000 2.5000];
[X,W]=nnls(A,b)
X=
0
0.6563
0.6998
W=
-3.6820
-0.0000
-0.0000
x1=A\b
x1=
-0.3569
0.5744
0.7846
A*X-b
ans=
1.1258
0.1437
-0.1616
A*x1-b
ans=
1.0e-0.15
-0.2220
0.4441
0

[Matlab]求解线性方程组的更多相关文章

  1. matlab 求解线性方程组之LU分解

    线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...

  2. matlab 求解线性方程组之范数

    1.赋范线性空间和内积空间 在线性代数的初级教材里,一般是在向量空间中定义内积,然后再由内积来导出范数,比如在n维实向量空间中: |x||=√<x,x> 在线性代数的高级教材中,一般是将内 ...

  3. matlab中求解线性方程组的rref函数

    摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det( ...

  4. 【原创】开源Math.NET基础数学类库使用(06)直接求解线性方程组

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...

  5. python 求解线性方程组

    Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - ...

  6. Numpy库进阶教程(一)求解线性方程组

    前言 Numpy是一个很强大的python科学计算库.为了机器学习的须要.想深入研究一下Numpy库的使用方法.用这个系列的博客.记录下我的学习过程. 系列: Numpy库进阶教程(二) 正在持续更新 ...

  7. matlab 求解线性规划问题

    线性规划 LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为: minf(x):待最小化的目标函数(如果问题本 ...

  8. fslove - Matlab求解多元多次方程组

    fslove - Matlab求解多元多次方程组 简介: 之前看到网上的一些资料良莠不齐,各种转载之类的,根本无法解决实际问题,所以我打算把自己的学到的总结一下,以实例出发讲解fsolve. 示例如下 ...

  9. 用Matlab求解微分方程

    用Matlab求解微分方程 解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法 解析解 利用dsolve函数进行求解 syms x; s = dsolve('eq1,eq2,.. ...

随机推荐

  1. Boost下载安装

    下载解压 官方地址 wget https://dl.bintray.com/boostorg/release/1.72.0/source/boost_1_72_0.tar.gz tar -zxvf b ...

  2. 【记录一个问题】linux下使用opencv中的UMat,性能并未提升,反而略有下降

    使用后性能略微下降,一开始怀疑是UMat拷贝的问题.运行 nvidia-smi -l 1, 发现GPU占用始终为0.说明opencl使用的是CPU版本,而不是GPU版本.明天试验opencl的GPU版 ...

  3. 【记录一个问题】android ndk中不支持pthread_yield()

    如题 使用这个函数报如下错误: error: use of undeclared identifier 'pthread_yield' pthread_yield(); 不得已,使用usleep(50 ...

  4. 前端vue-TinyMCE富文本编辑器表情插件报错解决

    最近项目中需要使用文本编辑器,比较了下最终选择了TinyMCE这款富文本编辑器.我安装的是TinyMCE v5但是在使用表情插件的时候,表情一直都出不来,报错信息如下: Uncaught Syntax ...

  5. linux 启动过程原理哦

    bios加电自检硬件设备 grub引导加载程序 当内核被加载到内存,内核阶段就开始了. init进程是所有进程的发起者和控制者.因为在任何基于unix的系统中,它都是第一个运行的进程. 然后执行sys ...

  6. aws vpc 知识总结(助理级)

    一 什么是vpc? Amazon Virtual Private Cloud(Amazon VPC)使您可以将AWS资源启动到您定义的虚拟网络中. 虚拟的云计算. /* 1 默认vpc ? 创建一个具 ...

  7. 010 Linux 文本统计与去重 (wc 和 uniq)

    wc 命令一般是作为组合命令的一员与其他命令一同起到统计的作用.而一般情况下使用wc -l 命令较多. uniq 可检查文本文件中重复出现的行,一般与 sort 命令结合使用.一起组合搭配使用完成统计 ...

  8. HBase安装教程

    一.版本介绍 linux : CentOS7 Hadoop : 2.7.6 zookeeper : 3.4.6 hbase : 1.4.6 jdk : jdk1.8.0_171 三个节点的主机名分别为 ...

  9. zabbix 监控系统概述及部署

    zabbix 监控系统概述及部署 1.Zabbix是什么: zabbix是一个个基于web界而的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系 ...

  10. 7、前端--jQuery简介、基本选择器、基本筛选器、属性选择器、表单选择器、筛选器方法、节点操作、绑定事件

    jQuery简介 宗旨:Write less, do more. 内部封装了js代码 是编程更加简单并且兼容所有的主流浏览器 版本:1.x 2.x 3.x # 可以使用3.x最新版 是第三方的类库:使 ...