• 题意:有两个正整数\(n\)和\(m\),每次操作可以使\(n*=2\)或者\(n-=1\),问最少操作多少次使得\(n=m\).

  • 题解:首先,若\(n\ge m\),直接输出\(n-m\),若\(2*n>=m\),分\(m\)的奇偶判断一下,如果是奇数就输出\(n-(m+1)/2+2\),是偶数就输出\(n-m/2+1\).否则我们就需要用dp来求解,因为是求最小值,所以先初始化将所有值设为\(INF\),\(dp[i]\)表示从\(n\)到\(m\)的操作次数最少的最优解,首先需要更新\([1,n]\)的状态,这个不难写,\(dp[i]=dp[i+1]+1\),然后我们就可以从\(1\)开始枚举到\(m\),而我们当前的状态\(dp[i]\)可以更新后面的状态\(dp[i*2]\),这步应该不难想,这儿的难点是我们需要更新一些奇数的状态,比如\(n=2\),我们刚开始可以更新\(dp[4]\),然后到\(n=3\)的时候发现\(3\)只能通过\(4\)更新得到,而\(dp[4]\)由\(dp[2]\)更新过了,所以我们可以通过\(dp[4]\)来更新\(dp[3]\),于是每次遍历我们更新两个状态,一个是自己的状态\(dp[i]=min(dp[i],dp[i+1]+1)\),一个是后面的数的状态\(dp[i*2]=min(dp[i*2],dp[i]+1)\).

  • 代码:

    int n,m;
    int dp[N]; int main() {
    //ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    n=read(),m=read(); if(n>=m){
    printf("%d\n",n-m);
    return 0;
    } if(m<=2*n){
    if(m&1){
    int cnt=(m+1)/2;
    printf("%d\n",n-cnt+2);
    }
    else printf("%d\n",n-m/2+1);
    return 0;
    }
    me(dp,INF,sizeof(dp));
    dp[n]=0;
    for(int i=n-1;i>=1;--i) dp[i]=dp[i+1]+1; for(int i=1;i<=m;++i){
    dp[i]=min(dp[i],dp[i+1]+1);
    dp[i*2]=min(dp[i*2],dp[i]+1);
    } printf("%d\n",dp[m]); return 0;
    }

Codeforces Round #295 (Div. 2) B. Two Buttons (DP)的更多相关文章

  1. Codeforces Round #295 (Div. 2)B - Two Buttons BFS

    B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. Codeforces Round #295 (Div. 2)---B. Two Buttons( bfs步数搜索记忆 )

    B. Two Buttons time limit per test : 2 seconds memory limit per test :256 megabytes input :standard ...

  3. Codeforces Round #295 (Div. 2) B. Two Buttons

    B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. Codeforces Round #295 (Div. 2) B. Two Buttons 520B

    B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  5. 【记忆化搜索】Codeforces Round #295 (Div. 2) B - Two Buttons

    题意:给你一个数字n,有两种操作:减1或乘2,问最多经过几次操作能变成m: 随后发篇随笔普及下memset函数的初始化问题.自己也是涨了好多姿势. 代码 #include<iostream> ...

  6. Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)

    题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...

  7. Codeforces Round #295 (Div. 2)

    水 A. Pangram /* 水题 */ #include <cstdio> #include <iostream> #include <algorithm> # ...

  8. codeforces 521a//DNA Alignment// Codeforces Round #295(Div. 1)

    题意:如题定义的函数,取最大值的数量有多少? 结论只猜对了一半. 首先,如果只有一个元素结果肯定是1.否则.s串中元素数量分别记为a,t,c,g.设另一个串t中数量为a',t',c',g'.那么,固定 ...

  9. Codeforces Round #295 (Div. 2)C - DNA Alignment 数学题

    C. DNA Alignment time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

随机推荐

  1. 【十天自制软渲染器】DAY 02:画一条直线(DDA 算法 & Bresenham’s 算法)

    推荐关注公众号「卤蛋实验室」或访问博客原文,更新更及时,阅读体验更佳 第一天我们搭建了 C++ 的运行环境并画了一个点,根据 点 → 线 → 面 的顺序,今天我们讲讲如何画一条直线. 本文主要讲解直线 ...

  2. mysql—information_schema数据库

    一.介绍 MySQL中有一个默认数据库名为information_schema,在MySQL中我们把 information_schema 看作是一个数据库,确切说是信息数据库.其中保存着关于MySQ ...

  3. HTML5表格详细教程

    HTML5表格 文章目录 HTML5表格 5.1 定义表格 5.1.1 普通表格.列标题 5.1.2 表格标题 5.1.3 表格行分组.表格列分组 5.2 表格属性 5.2.1 单线表格.分离单元格 ...

  4. kaggle新手如何在平台学习大神的代码

    原创:数据臭皮匠  [导读]Kaggle ,作为听说它很牛X但从未接触过的同学,可能仅仅了解这是一个参加数据挖掘比赛的网站,殊不知Kaggle也会有赛题相关的数据集, 比如我们熟知的房价预测.泰坦尼克 ...

  5. Redis 实战 —— 05. Redis 其他命令简介

    发布与订阅 P52 Redis 实现了发布与订阅(publish/subscribe)模式,又称 pub/sub 模式(与设计模式中的观察者模式类似).订阅者负责订阅频道,发送者负责向频道发送二进制字 ...

  6. secrets 管理工具 Vault 的介绍、安装及使用

    原文:https://ryan4yin.space/posts/expirence-of-vault/ Vault 是 hashicorp 推出的 secrets 管理.加密即服务与权限管理工具.它的 ...

  7. C#高级编程第11版 - 第九章 索引

    [1]9.1 System.String 类 String类中关键的方法.如替换,比较等. [2]9.1.1 构建字符串 1.String类依然有一个缺点:因为它是不可变的数据类型,这意味当你初始化一 ...

  8. Qt 使用tablib获取多媒体tag信息

    最近项目需要, 要获取音乐文件tag信息. 有两个方式, 本人偏向第二种方式. 效率比较高,可控性比较好. 一.QML方式 使用QML Audio component 进行解析. 将多媒体文件都放到P ...

  9. Slack 的想法很好啊,很有创新,牛。

    [原]https://www.leiphone.com/news/201411/aXHUpe4ZFI2sSwpb.html 由于以往一些用于办公的应用反响平平,因此对迅速崛起的办公交流应用Slack, ...

  10. notepad文件对比

    一/格式转换 我用的是json,就以这个为例吧: 打开软件--插件--插件管理 搜索着两个进行安装,自动重启打开 将文件的代码做好,选择语言--J--可以找到json 用刚安装的插件--json vi ...