一、Pandas

  pandas的数据元素包括以下几种类型:

类型 说明
object 字符串或混合类型
int 整型
float 浮点型
datetime 时间类型
bool 布尔型

二、Series与DataFrame区别:

  1. Series是带索引的一维数组
  2. Series对象的两个重要属性是:index(索引)和value(数据值)
  3. DataFrame的任意一行或者一列就是一个Series对象

三、创建Series对象:pd.Series(data,index=index)

  其中data可以是很多类型:

    1. 一个列表---------->pd.Series([1,2,3])
    2. 一个ndarray------->pd.Series(np.random.randint(2),index=['a','b'])
    3. 一个python字典---->pd.Series({"a":2,"b":0})
    4. 一个标量值-------->pd.Series(3,index=[1,2,3])

  Series在算数运算中会自动对齐不同索引的数据:

    例如:

 >>> s=pd.Series([1,2,3],index=['a','b','c'])
>>> a=pd.Series([4,1,0],index=['b','a','c'])
>>> s+a
a 2
b 6
c 3

      unique():返回结果是一个数组,包含Series去重后的元素

      value_counts():查看每一个唯一元素的频数

四、创建DataFrame对象:pd.DataFrame(data,index,columns)

  与Series不同的是,DataFrame包括索引index和表头columns:

  其中data可以是很多类型:

    1. 包含列表、字典或者Series的字典
    2. 二维数组
    3. 一个Series对象
    4. 另一个DataFrame对象

   例如:

   1、从字典创建:

 >>> d = {'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([2,3,4],index=['a','b','d'])}
>>> pd.DataFrame(d)
  one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0

   2、从字典创建

 >>> pd.DataFrame(d,index=['a','b'],columns=['w1','w2'])
w1 w2
a NaN NaN
b NaN NaN
>>> pd.DataFrame(d,index=['a','b'],columns=['one','two'])
one two
a 1 2
b 2 3

五、DataFrame的数据筛选

  与Series类似,可通过布尔表达式按照一定条件进行筛选。不同于Series的是,DataFrame布尔筛选返回的是满足筛选条件的样本的所有列的数据(即:一返回就是一条记录)。

  上例子!

 >>> d = {'one':pd.Series([1,2,3],index=['a','b','c']),'two':pd.Series([2,3,4],index=['a','b','d'])}
>>> pd.DataFrame(d)
>>> d[d['one']<3]
one two
a 1.0 2.0
b 2.0 3.0

六、DataFrame的删除和添加一列

  添加一列:(1)像字典一样通过赋值的方式执行

 >>> d['three']=d['one']+d['two']

        (2)使用insert()在指定位置插入一列,例如在位置1插入新的一列'new',值为0

>>> d.insert(1,'new',np.zeros((4,1)))
>>> d
one new two three
a 1.0 0.0 2.0 3.0
b 2.0 0.0 3.0 5.0
c 3.0 0.0 NaN NaN
d NaN 0.0 4.0 NaN

  删除一列:像字典一样------>使用pop()或者del(),pop()可以在删除列的基础之上将删除的列赋值给一个新的变量

 >>> del d['three']
>>> d
one new two
a 1.0 0.0 2.0
b 2.0 0.0 3.0
c 3.0 0.0 NaN
d NaN 0.0 4.0
>>> new = d.pop('new')
>>> d
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
>>> new
a 0.0
b 0.0
c 0.0
d 0.0
Name: new, dtype: float64

六、DataFrame修改索引名:使用rename()方法

 >>> d
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
>>> i = {'a':'A','b':'B'}
>>> d.rename(index=i)
one two
A 1.0 2.0
B 2.0 3.0
c 3.0 NaN
d NaN 4.0

3-Pandas之Series和DataFrame区别的更多相关文章

  1. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  2. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  3. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  4. Pandas中Series和DataFrame的索引

    在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...

  5. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  6. pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  7. pandas学习series和dataframe基础

    PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...

  8. [Python] Pandas 中 Series 和 DataFrame 的用法笔记

    目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...

  9. pandas中series和dataframe之间的区别

    series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...

随机推荐

  1. Netty 源码解析(六): Channel 的 register 操作

    原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第六篇. 接下来的时间灯塔君持续更新Netty系列一共九篇   Netty 源码解析(一 ):开始 Netty ...

  2. GoLand 2020.1.3破解教程

    此教程适用于GoLand 2020.1.3其他版本理论上是一样的. GoLand建议从官网下载---->>>>>>下载 1 如果之前有激活留下的补丁文件,建议卸载删 ...

  3. Windows 最值得推荐的装机必备“神器”软件大合集

    工欲善其事,必先利其器.每个人在平时使用电脑的过程中,多多少少都会积累一些好用的软件,我也不例外,从业这么多年,收藏了许多不错的软件,通过这篇文章都分享给大家.如果觉得不错,请把这篇文章分享给你的小伙 ...

  4. Window - 安装 ant

    官方下载地址 https://ant.apache.org/bindownload.cgi 旧版下载地址 https://archive.apache.org/dist/ant/binaries/ 挑 ...

  5. day65 django进阶(1)

    目录 一.聚合查询与分组查询 1 聚合查询(aggregate) 2 分组查询(annotate) 二.F与Q查询 1 F查询的三个功能 1.1 能帮助我们直接获取到表中某个字段对应的数据 1.2 获 ...

  6. JavaScript的参数是按照什么方式传递的?

    1.基本类型传递方式 <script> var a = 1; function test(x) { x = 10; console.log(x); } test(a); // consol ...

  7. ElasticSearch 定时批量删除N天前的数据

    描述: 之前我已经完成了使用ElasticSearch.kibana.filebeat.三个工具完成分布式集群收集 分布在各个ip地址上的微服务日志,这样就可以统一的在一个服务器上查看了所有的微服务产 ...

  8. 【JVM】或许,这就是二进制Class吧

    水稻:看你研究盯着这个文档一天了,什么玩意让人心驰神往 菜瓜:前几天意外得到一本武功秘籍<jvms8>,看起来就情不自禁 水稻:这不是Java虚拟机的说明文档吗<PS:投来惊吓的目光 ...

  9. 绘图和可视化知识图谱-《利用Python进行数据分析》

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章 ...

  10. CENTOS下搭建git代码仓库 ssh协议

    centos服务器下搭建git仓库,使用ssh协议管理仓库代码权限    git官网(http://git-scm.com/) 使用ssh协议: 一.安装git,使用yum install git 或 ...