3-Pandas之Series和DataFrame区别
一、Pandas
pandas的数据元素包括以下几种类型:
| 类型 | 说明 |
| object | 字符串或混合类型 |
| int | 整型 |
| float | 浮点型 |
| datetime | 时间类型 |
| bool | 布尔型 |
二、Series与DataFrame区别:
- Series是带索引的一维数组
- Series对象的两个重要属性是:index(索引)和value(数据值)
- DataFrame的任意一行或者一列就是一个Series对象
三、创建Series对象:pd.Series(data,index=index)
其中data可以是很多类型:
- 一个列表---------->pd.Series([1,2,3])
- 一个ndarray------->pd.Series(np.random.randint(2),index=['a','b'])
- 一个python字典---->pd.Series({"a":2,"b":0})
- 一个标量值-------->pd.Series(3,index=[1,2,3])
Series在算数运算中会自动对齐不同索引的数据:
例如:
>>> s=pd.Series([1,2,3],index=['a','b','c'])
>>> a=pd.Series([4,1,0],index=['b','a','c'])
>>> s+a
a 2
b 6
c 3
unique():返回结果是一个数组,包含Series去重后的元素
value_counts():查看每一个唯一元素的频数
四、创建DataFrame对象:pd.DataFrame(data,index,columns)
与Series不同的是,DataFrame包括索引index和表头columns:
其中data可以是很多类型:
- 包含列表、字典或者Series的字典
- 二维数组
- 一个Series对象
- 另一个DataFrame对象
例如:
1、从字典创建:
>>> d = {'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([2,3,4],index=['a','b','d'])}
>>> pd.DataFrame(d)
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
2、从字典创建
>>> pd.DataFrame(d,index=['a','b'],columns=['w1','w2'])
w1 w2
a NaN NaN
b NaN NaN
>>> pd.DataFrame(d,index=['a','b'],columns=['one','two'])
one two
a 1 2
b 2 3
五、DataFrame的数据筛选
与Series类似,可通过布尔表达式按照一定条件进行筛选。不同于Series的是,DataFrame布尔筛选返回的是满足筛选条件的样本的所有列的数据(即:一返回就是一条记录)。
上例子!
>>> d = {'one':pd.Series([1,2,3],index=['a','b','c']),'two':pd.Series([2,3,4],index=['a','b','d'])}
>>> pd.DataFrame(d)
>>> d[d['one']<3]
one two
a 1.0 2.0
b 2.0 3.0
六、DataFrame的删除和添加一列
添加一列:(1)像字典一样通过赋值的方式执行
>>> d['three']=d['one']+d['two']
(2)使用insert()在指定位置插入一列,例如在位置1插入新的一列'new',值为0
>>> d.insert(1,'new',np.zeros((4,1)))
>>> d
one new two three
a 1.0 0.0 2.0 3.0
b 2.0 0.0 3.0 5.0
c 3.0 0.0 NaN NaN
d NaN 0.0 4.0 NaN
删除一列:像字典一样------>使用pop()或者del(),pop()可以在删除列的基础之上将删除的列赋值给一个新的变量
>>> del d['three']
>>> d
one new two
a 1.0 0.0 2.0
b 2.0 0.0 3.0
c 3.0 0.0 NaN
d NaN 0.0 4.0
>>> new = d.pop('new')
>>> d
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
>>> new
a 0.0
b 0.0
c 0.0
d 0.0
Name: new, dtype: float64
六、DataFrame修改索引名:使用rename()方法
>>> d
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
>>> i = {'a':'A','b':'B'}
>>> d.rename(index=i)
one two
A 1.0 2.0
B 2.0 3.0
c 3.0 NaN
d NaN 4.0
3-Pandas之Series和DataFrame区别的更多相关文章
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Python之Pandas中Series、DataFrame实践
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- pandas学习series和dataframe基础
PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...
- [Python] Pandas 中 Series 和 DataFrame 的用法笔记
目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...
- pandas中series和dataframe之间的区别
series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...
随机推荐
- Netty 源码解析(六): Channel 的 register 操作
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第六篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一 ):开始 Netty ...
- GoLand 2020.1.3破解教程
此教程适用于GoLand 2020.1.3其他版本理论上是一样的. GoLand建议从官网下载---->>>>>>下载 1 如果之前有激活留下的补丁文件,建议卸载删 ...
- Windows 最值得推荐的装机必备“神器”软件大合集
工欲善其事,必先利其器.每个人在平时使用电脑的过程中,多多少少都会积累一些好用的软件,我也不例外,从业这么多年,收藏了许多不错的软件,通过这篇文章都分享给大家.如果觉得不错,请把这篇文章分享给你的小伙 ...
- Window - 安装 ant
官方下载地址 https://ant.apache.org/bindownload.cgi 旧版下载地址 https://archive.apache.org/dist/ant/binaries/ 挑 ...
- day65 django进阶(1)
目录 一.聚合查询与分组查询 1 聚合查询(aggregate) 2 分组查询(annotate) 二.F与Q查询 1 F查询的三个功能 1.1 能帮助我们直接获取到表中某个字段对应的数据 1.2 获 ...
- JavaScript的参数是按照什么方式传递的?
1.基本类型传递方式 <script> var a = 1; function test(x) { x = 10; console.log(x); } test(a); // consol ...
- ElasticSearch 定时批量删除N天前的数据
描述: 之前我已经完成了使用ElasticSearch.kibana.filebeat.三个工具完成分布式集群收集 分布在各个ip地址上的微服务日志,这样就可以统一的在一个服务器上查看了所有的微服务产 ...
- 【JVM】或许,这就是二进制Class吧
水稻:看你研究盯着这个文档一天了,什么玩意让人心驰神往 菜瓜:前几天意外得到一本武功秘籍<jvms8>,看起来就情不自禁 水稻:这不是Java虚拟机的说明文档吗<PS:投来惊吓的目光 ...
- 绘图和可视化知识图谱-《利用Python进行数据分析》
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章 ...
- CENTOS下搭建git代码仓库 ssh协议
centos服务器下搭建git仓库,使用ssh协议管理仓库代码权限 git官网(http://git-scm.com/) 使用ssh协议: 一.安装git,使用yum install git 或 ...