题意

给出一张DAG,要求删除尽量多的边使得连通性不变.(即:若删边前u到v有路径,则删边后仍有路径).点数30000,边数100000.

分析

如果从u到v有(u,v)这条边,且从u到v只有这一条路径,那么这条边必须保留.否则这条边一定可以删除.因为如果有不止一条路径从u到v,必然存在点x(x!=u,x!=v)使得u可到达x,x可到达v.而删边后必然也满足u可到达x,x可到达v,所以直接删掉(u,v)这条边就可以了.

刚才的分析已经给出了一个判定方法.既然如果有不止一条路径从u到v,必然存在点x(x!=u,x!=v)使得u可到达x,x可到达v,那么我们对每条边(u,v),枚举是否存在这样的x即可.这需要我们求出每个点能到达的点的集合,以及能到达这个点的集合.大力压位一波就好了.因为是DAG所以这个集合可以递推.复杂度O(nm/32).

其实这题是看内存猜算法系列,榜上清一色的120多兆,不是压位还能是啥

我是200多兆

#include<cstdio>
const int mod=1000000007;
const int maxn=30005,maxm=200005;
struct edge{
int to,next;
}lst[maxm],lst2[maxm];int len=1,first[maxn],len2=1,first2[maxn];
void addedge(int a,int b){
lst[len].to=b;lst[len].next=first[a];first[a]=len++;
}
void addedge2(int a,int b){
lst2[len2].to=b;lst2[len2].next=first2[a];first2[a]=len2++;
}
int sz;
int reach[maxn][maxn/32+2],from[maxn][maxn/32+2];
int getbit(int u,int x){
return (reach[u][x/32]>>(x&31))&1;
}
void revbit(int u,int x){
reach[u][x/32]^=(1<<(x&31));
}
void revbit2(int u,int x){
from[u][x/32]^=(1<<(x&31));
}
bool vis[maxn];
void dfs(int x){
if(vis[x])return;
vis[x]=true;
for(int pt=first[x];pt;pt=lst[pt].next){
dfs(lst[pt].to);
for(int i=0;i<sz;++i)reach[x][i]|=reach[lst[pt].to][i];
}
revbit(x,x);
}
void dfs2(int x){
if(vis[x])return;
vis[x]=true;
for(int pt=first2[x];pt;pt=lst2[pt].next){
dfs2(lst2[pt].to);
for(int i=0;i<sz;++i)from[x][i]|=from[lst2[pt].to][i];
}
revbit2(x,x);
}
int main(){
int n,m;scanf("%d%d",&n,&m);sz=(n+31)/32+1;
for(int i=1,a,b;i<=m;++i){
scanf("%d%d",&a,&b);
addedge(a,b);addedge2(b,a);
}
for(int i=1;i<=n;++i)if(!vis[i])dfs(i);
for(int i=1;i<=n;++i)vis[i]=0;
for(int i=1;i<=n;++i)if(!vis[i])dfs2(i);
for(int i=1;i<=n;++i)revbit(i,i),revbit2(i,i);
int ans=0;
for(int i=1;i<=n;++i){
for(int pt=first[i];pt;pt=lst[pt].next){
int y=lst[pt].to;
for(int j=0;j<sz;++j){
if(from[y][j]&reach[i][j]){
ans++;break;
}
}
}
}
printf("%d\n",ans);
return 0;
}

bzoj4484[JSOI2015]最小表示的更多相关文章

  1. BZOJ4484 JSOI2015最小表示(拓扑排序+bitset)

    考虑在每个点的出边中删除哪些.如果其出边所指向的点中存在某点能到达另一点,那么显然指向被到达点的边是没有用的.于是拓扑排序逆序处理,按拓扑序枚举出边,bitset维护可达点集合即可. #include ...

  2. BZOJ4484: [Jsoi2015]最小表示(拓扑排序乱搞+bitset)

    Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 348  Solved: 172[Submit][Status][Discuss] Descriptio ...

  3. [BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]

    题意 给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变 \(n\leq 3\times 10^4\ ,m\leq 10^5\) . ...

  4. 4484: [Jsoi2015]最小表示(拓扑序+bitset维护连通性)

    4484: [Jsoi2015]最小表示 题目链接 题解: bitset的题感觉都好巧妙啊QAQ. 因为题目中给出的是一个DAG,如果\(u->v\)这条边可以删去,等价于还存在一个更长的路径可 ...

  5. [JSOI2015]最小表示

    题目大意:尽可能多地去掉一个有向无环图上的边,使得图的连通性不变. 思路:拓扑排序,然后倒序求出每个结点到出度为$0$的点的距离$d$,再倒序遍历每一个点$x$,以$d$为关键字对其出边降序排序,尝试 ...

  6. bzoj 4484 [Jsoi2015]最小表示——bitset

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4484 每个点上存一下它到每个点的连通性.用 bitset 的话空间就是 \( \frac{n ...

  7. BZOJ 4484: [Jsoi2015]最小表示(拓扑排序+bitset)

    传送门 解题思路 \(bitset\)维护连通性,给每个点开个\(bitset\),第\(i\)位为\(1\)则表示与第\(i\)位联通.算答案时显然要枚举每条边,而枚举边的顺序需要贪心,一个点先到达 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. 【bzoj4484】【jsoi2015】最小表示

    Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 432  Solved: 223[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. 342. Power of Four(One-line)

    342. Power of Four     Total Accepted: 707 Total Submissions: 2005 Difficulty: Easy Given an integer ...

  2. ELKStack入门篇(一)之ELK部署和使用

    一.ELKStack简介 1.ELK介绍 中文指南:https://www.gitbook.com/book/chenryn/elk-stack-guide-cn/details ELK Stack包 ...

  3. set get方法诡异的空指针异常

    发现原来是我的bean没有实例化 我的一直都是这么实例化的: UserEntity userEntity = null;难怪每次用不了set方法 原来是没有实例化 实例化之后就能正常使用了 UserE ...

  4. 【转】bash: ssh: command not found解决方法(linux)

    原文转自:http://www.cnblogs.com/ahauzyy/archive/2013/04/25/3043699.html 今天在搭建hadoop的开发环境中,用的是centsos6.0的 ...

  5. SQL语句--连接查询

    一.连接查询有以下几种 1.内连接查询 select * from t1 inner join t2 on t1.x = t2.x;  返回有关联的行 2.外链接查询 以下写法都省略了 中间的 out ...

  6. @Resource和@Autowired的异同

    相同点: 两者都能做到注入一个Bean. 两者都可应用在Field和Method上面. 两者均为Runtime级别的Retention. 不同点: 使用的场景有差异 @Resource可应用在类(TY ...

  7. Delphi 实现照片抽奖-原创

    有单位年会要用照片抽奖,上网搜了几个都不满意,且居然还要收费.自己写一个算了.只是有一点不爽,Delphi 7 在 Windows 7 64位下有问题,不能双击 dpr 文件直接打开项目! 关于性能: ...

  8. Teaching Machines to Understand Us 让机器理解我们 之三 自然语言学习及深度学习的信仰

    Language learning 自然语言学习 Facebook’s New York office is a three-minute stroll up Broadway from LeCun’ ...

  9. [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题

    题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...

  10. mysql先删除后插入导致死锁

    所报的错误为:pymysql.err.OperationalError: (1213, 'Deadlock found when trying to get lock; try restarting ...