bzoj4484[JSOI2015]最小表示
题意
给出一张DAG,要求删除尽量多的边使得连通性不变.(即:若删边前u到v有路径,则删边后仍有路径).点数30000,边数100000.
分析
如果从u到v有(u,v)这条边,且从u到v只有这一条路径,那么这条边必须保留.否则这条边一定可以删除.因为如果有不止一条路径从u到v,必然存在点x(x!=u,x!=v)使得u可到达x,x可到达v.而删边后必然也满足u可到达x,x可到达v,所以直接删掉(u,v)这条边就可以了.
刚才的分析已经给出了一个判定方法.既然如果有不止一条路径从u到v,必然存在点x(x!=u,x!=v)使得u可到达x,x可到达v,那么我们对每条边(u,v),枚举是否存在这样的x即可.这需要我们求出每个点能到达的点的集合,以及能到达这个点的集合.大力压位一波就好了.因为是DAG所以这个集合可以递推.复杂度O(nm/32).
其实这题是看内存猜算法系列,榜上清一色的120多兆,不是压位还能是啥
我是200多兆
#include<cstdio>
const int mod=1000000007;
const int maxn=30005,maxm=200005;
struct edge{
int to,next;
}lst[maxm],lst2[maxm];int len=1,first[maxn],len2=1,first2[maxn];
void addedge(int a,int b){
lst[len].to=b;lst[len].next=first[a];first[a]=len++;
}
void addedge2(int a,int b){
lst2[len2].to=b;lst2[len2].next=first2[a];first2[a]=len2++;
}
int sz;
int reach[maxn][maxn/32+2],from[maxn][maxn/32+2];
int getbit(int u,int x){
return (reach[u][x/32]>>(x&31))&1;
}
void revbit(int u,int x){
reach[u][x/32]^=(1<<(x&31));
}
void revbit2(int u,int x){
from[u][x/32]^=(1<<(x&31));
}
bool vis[maxn];
void dfs(int x){
if(vis[x])return;
vis[x]=true;
for(int pt=first[x];pt;pt=lst[pt].next){
dfs(lst[pt].to);
for(int i=0;i<sz;++i)reach[x][i]|=reach[lst[pt].to][i];
}
revbit(x,x);
}
void dfs2(int x){
if(vis[x])return;
vis[x]=true;
for(int pt=first2[x];pt;pt=lst2[pt].next){
dfs2(lst2[pt].to);
for(int i=0;i<sz;++i)from[x][i]|=from[lst2[pt].to][i];
}
revbit2(x,x);
}
int main(){
int n,m;scanf("%d%d",&n,&m);sz=(n+31)/32+1;
for(int i=1,a,b;i<=m;++i){
scanf("%d%d",&a,&b);
addedge(a,b);addedge2(b,a);
}
for(int i=1;i<=n;++i)if(!vis[i])dfs(i);
for(int i=1;i<=n;++i)vis[i]=0;
for(int i=1;i<=n;++i)if(!vis[i])dfs2(i);
for(int i=1;i<=n;++i)revbit(i,i),revbit2(i,i);
int ans=0;
for(int i=1;i<=n;++i){
for(int pt=first[i];pt;pt=lst[pt].next){
int y=lst[pt].to;
for(int j=0;j<sz;++j){
if(from[y][j]&reach[i][j]){
ans++;break;
}
}
}
}
printf("%d\n",ans);
return 0;
}
bzoj4484[JSOI2015]最小表示的更多相关文章
- BZOJ4484 JSOI2015最小表示(拓扑排序+bitset)
考虑在每个点的出边中删除哪些.如果其出边所指向的点中存在某点能到达另一点,那么显然指向被到达点的边是没有用的.于是拓扑排序逆序处理,按拓扑序枚举出边,bitset维护可达点集合即可. #include ...
- BZOJ4484: [Jsoi2015]最小表示(拓扑排序乱搞+bitset)
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 348 Solved: 172[Submit][Status][Discuss] Descriptio ...
- [BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]
题意 给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变 \(n\leq 3\times 10^4\ ,m\leq 10^5\) . ...
- 4484: [Jsoi2015]最小表示(拓扑序+bitset维护连通性)
4484: [Jsoi2015]最小表示 题目链接 题解: bitset的题感觉都好巧妙啊QAQ. 因为题目中给出的是一个DAG,如果\(u->v\)这条边可以删去,等价于还存在一个更长的路径可 ...
- [JSOI2015]最小表示
题目大意:尽可能多地去掉一个有向无环图上的边,使得图的连通性不变. 思路:拓扑排序,然后倒序求出每个结点到出度为$0$的点的距离$d$,再倒序遍历每一个点$x$,以$d$为关键字对其出边降序排序,尝试 ...
- bzoj 4484 [Jsoi2015]最小表示——bitset
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4484 每个点上存一下它到每个点的连通性.用 bitset 的话空间就是 \( \frac{n ...
- BZOJ 4484: [Jsoi2015]最小表示(拓扑排序+bitset)
传送门 解题思路 \(bitset\)维护连通性,给每个点开个\(bitset\),第\(i\)位为\(1\)则表示与第\(i\)位联通.算答案时显然要枚举每条边,而枚举边的顺序需要贪心,一个点先到达 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 【bzoj4484】【jsoi2015】最小表示
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 432 Solved: 223[Submit][Status][Discuss] Descriptio ...
随机推荐
- 20155336 2016-2017-2《JAVA程序设计》第一周学习总结
# 20155336 2016-2017-2<JAVA程序设计>第1周学习总结 ## 教材学习内容总结 开学的第一周,带着些许的欣喜和好奇,听完了老师的第一堂课.说心里话学习JAVA仿佛 ...
- day1 RHCE
1.环境部署 classroom.example.com: 172.25.0.254 root Asimov server0.example.com: 172.25.0.11 root redhat ...
- 【LG4585】[FJOI2015]火星商店问题
[LG4585][FJOI2015]火星商店问题 题面 bzoj权限题 洛谷 \(Notice:\) 关于题面的几个比较坑的地方: "一天"不是一个操作,而是有0操作就相当于一天开 ...
- Django视图层详细介绍
1 视图函数 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应.响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. ...
- activeX 开发
转自 (http://www.cnblogs.com/chinadhf/archive/2010/09/03/1817336.html),并且在开发过程中遇到的问题进行了补充说明,让新手少走弯路 本文 ...
- WebGL中使用window.requestAnimationFrame创建主循环
今天总结记录一下WebGL中主循环的创建和作用.我先说明什么是主循环,其实单纯的webgl不存在主循环这个概念,这个概念是由渲染引擎引入的,主循环就是利用一个死循环或无截止条件的递归达到定时刷新can ...
- 使用Photon引擎进行unity网络游戏开发(四)——Photon引擎实现网络游戏逻辑
使用Photon引擎进行unity网络游戏开发(四)--Photon引擎实现网络游戏逻辑 Photon PUN Unity 网络游戏开发 网络游戏逻辑处理与MasterClient 网络游戏逻辑处理: ...
- Spring Task中的定时任务无法注入service的解决办法
1.问题 因一个项目(使用的是Spring+SpringMVC+hibernate框架)需要在spring task定时任务中调用数据库操作,在使用 @Autowired注入service时后台报错, ...
- 梯度消失&&梯度爆炸
转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案. ...
- 算法笔记(c++)--关于01背包的滚动数组
算法笔记(c++)--关于01背包的滚动数组 关于01背包问题:基本方法我这篇写过了. https://www.cnblogs.com/DJC-BLOG/p/9416799.html 但是这里数组是N ...