Matplotlib新手上路(下)
接上篇继续,这次来演示下如何做动画,以及加载图片
一、动画图
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation fig, ax = plt.subplots() x = np.arange(0, 2 * np.pi, 0.01)
line, = ax.plot(x, np.sin(x)) def init():
line.set_ydata([np.nan] * len(x)) # Y轴值归0,Mac上加不加这句,都一样
return line, def animate(i):
line.set_ydata(np.sin(x + i / 100)) # update the data.
return line, ani = animation.FuncAnimation(
# blit在Mac上只能设置False,否则动画有残影
fig, animate, init_func=init, interval=2, blit=False, save_count=50) init() plt.show()
基本套路是:init()函数中给定图象的初始状态,然后animate()函数中每次对函数图象动态调整一点点,最后用FuncAnimation把它们串起来。
再来看一个官网给的比较好玩的示例:
from numpy import sin, cos
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as integrate
import matplotlib.animation as animation G = 9.8 # acceleration due to gravity, in m/s^2
L1 = 1.0 # length of pendulum 1 in m
L2 = 1.0 # length of pendulum 2 in m
M1 = 1.0 # mass of pendulum 1 in kg
M2 = 1.0 # mass of pendulum 2 in kg def derivs(state, t):
dydx = np.zeros_like(state)
dydx[0] = state[1] del_ = state[2] - state[0]
den1 = (M1 + M2) * L1 - M2 * L1 * cos(del_) * cos(del_)
dydx[1] = (M2 * L1 * state[1] * state[1] * sin(del_) * cos(del_) +
M2 * G * sin(state[2]) * cos(del_) +
M2 * L2 * state[3] * state[3] * sin(del_) -
(M1 + M2) * G * sin(state[0])) / den1 dydx[2] = state[3] den2 = (L2 / L1) * den1
dydx[3] = (-M2 * L2 * state[3] * state[3] * sin(del_) * cos(del_) +
(M1 + M2) * G * sin(state[0]) * cos(del_) -
(M1 + M2) * L1 * state[1] * state[1] * sin(del_) -
(M1 + M2) * G * sin(state[2])) / den2 return dydx # create a time array from 0..100 sampled at 0.05 second steps
dt = 0.05
t = np.arange(0.0, 20, dt) # th1 and th2 are the initial angles (degrees)
# w10 and w20 are the initial angular velocities (degrees per second)
th1 = 120.0
w1 = 0.0
th2 = -10.0
w2 = 0.0 # initial state
state = np.radians([th1, w1, th2, w2]) # integrate your ODE using scipy.integrate.
y = integrate.odeint(derivs, state, t) x1 = L1 * sin(y[:, 0])
y1 = -L1 * cos(y[:, 0]) x2 = L2 * sin(y[:, 2]) + x1
y2 = -L2 * cos(y[:, 2]) + y1 fig = plt.figure()
ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2))
ax.set_aspect('equal')
ax.grid() line, = ax.plot([], [], 'o-', lw=2)
time_template = 'time = %.1fs'
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) def init():
line.set_data([], [])
time_text.set_text('')
return line, time_text def animate(i):
thisx = [0, x1[i], x2[i]]
thisy = [0, y1[i], y2[i]] line.set_data(thisx, thisy)
time_text.set_text(time_template % (i * dt))
return line, time_text ani = animation.FuncAnimation(fig, animate, np.arange(1, len(y)),
interval=25, blit=False, init_func=init) plt.show()
甚至还可以创建一些艺术气息的动画:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation # Fixing random state for reproducibility
np.random.seed(19680801) # Create new Figure and an Axes which fills it.
fig = plt.figure(figsize=(5, 5))
ax = fig.add_axes([0, 0, 1, 1], frameon=False)
ax.set_xlim(0, 1), ax.set_xticks([])
ax.set_ylim(0, 1), ax.set_yticks([]) # Create rain data
n_drops = 50
rain_drops = np.zeros(n_drops, dtype=[('position', float, 2),
('size', float, 1),
('growth', float, 1),
('color', float, 4)]) # Initialize the raindrops in random positions and with
# random growth rates.
rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))
rain_drops['growth'] = np.random.uniform(50, 200, n_drops) # Construct the scatter which we will update during animation
# as the raindrops develop.
scat = ax.scatter(rain_drops['position'][:, 0], rain_drops['position'][:, 1],
s=rain_drops['size'], lw=0.3, edgecolors=rain_drops['color'],
facecolors='none') def update(frame_number):
# Get an index which we can use to re-spawn the oldest raindrop.
current_index = frame_number % n_drops # Make all colors more transparent as time progresses.
rain_drops['color'][:, 3] -= 1.0/len(rain_drops)
rain_drops['color'][:, 3] = np.clip(rain_drops['color'][:, 3], 0, 1) # Make all circles bigger.
rain_drops['size'] += rain_drops['growth'] # Pick a new position for oldest rain drop, resetting its size,
# color and growth factor.
rain_drops['position'][current_index] = np.random.uniform(0, 1, 2)
rain_drops['size'][current_index] = 5
rain_drops['color'][current_index] = (0, 0, 0, 1)
rain_drops['growth'][current_index] = np.random.uniform(50, 200) # Update the scatter collection, with the new colors, sizes and positions.
scat.set_edgecolors(rain_drops['color'])
scat.set_sizes(rain_drops['size'])
scat.set_offsets(rain_drops['position']) # Construct the animation, using the update function as the animation director.
animation = FuncAnimation(fig, update, interval=10)
plt.show()

二、加载图片
import matplotlib.pyplot as plt
import matplotlib.image as mpimg img = mpimg.imread('cat.png') # 随便从网上捞的一张图片,保存到当前目录下
lum_img = img[:, :, 0] # plt.figure()
plt.subplot(331)
plt.imshow(img) plt.subplot(332)
plt.imshow(lum_img) plt.subplot(333)
plt.imshow(lum_img, cmap="spring") plt.subplot(334)
plt.imshow(lum_img, cmap="summer") plt.subplot(335)
plt.imshow(lum_img, cmap="autumn") plt.subplot(336)
plt.imshow(lum_img, cmap="winter") plt.subplot(337)
plt.imshow(lum_img, cmap="hot") plt.subplot(338)
plt.imshow(lum_img, cmap="cool") plt.subplot(339)
plt.imshow(lum_img, cmap="bone") plt.show()

Matplotlib新手上路(下)的更多相关文章
- Matplotlib新手上路(中)
接上回继续 一.多张图布局(subplot) 1.1 subplot布局方式 import matplotlib.pyplot as plt plt.figure() plt.subplot(3, 2 ...
- Matplotlib新手上路(上)
matplotlib是python里用于绘图的专用包,功能十分强大.下面介绍一些最基本的用法: 一.最基本的划线 先来一个简单的示例,代码如下,已经加了注释: import matplotlib.py ...
- php大力力 [001节]2015-08-21.php在百度文库的几个基础教程新手上路日记 大力力php 大力同学 2015-08-21 15:28
php大力力 [001节]2015-08-21.php在百度文库的几个基础教程新手上路日记 大力力php 大力同学 2015-08-21 15:28 话说,嗯嗯,就是我自己说,做事认真要用表格,学习技 ...
- OpenGL教程之新手上路
Jeff Molofee(NeHe)的OpenGL教程- 新手上路 译者的话:NeHe的教程一共同拥有30多课,内容翔实,而且不断更新 .国内的站点实在应该向他们学习.令人吃惊的是,NeHe提供的例程 ...
- webpack4配置详解之新手上路初探
前言 经常会有群友问起webpack.react.redux.甚至create-react-app配置等等方面的问题,有些是我也不懂的,慢慢从大家的相互交流中,也学到了不少. 今天就尝试着一起来聊 ...
- 转-spring-boot 注解配置mybatis+druid(新手上路)-http://blog.csdn.net/sinat_36203615/article/details/53759935
spring-boot 注解配置mybatis+druid(新手上路) 转载 2016年12月20日 10:17:17 标签: sprinb-boot / mybatis / druid 10475 ...
- Ocelot 新手上路
新手上路,老司机请多多包含!Ocelot 在博园里文章特别多,但是按照其中一篇文章教程,如果经验很少或者小白,是没法将程序跑向博主的结果. 因此总结下 参考多篇文章,终于达到预期效果. Oce ...
- 新手上路——it人如何保持竞争力
新手上路——如何保持竞争力 JINGZHENGLI 套用葛大爷的一句名言:21世纪什么最贵,人才.哪你是人才还是人材?还是人财或人裁?相信大家都不是最后一种.何如保持住这个光环呢?就需要我们保持我们独 ...
- Dart语言快速学习上手(新手上路)
Dart语言快速学习上手(新手上路) // 声明返回值 int add(int a, int b) { return a + b; } // 不声明返回值 add2(int a, int b) { r ...
随机推荐
- 转载:获取Nginx源码(1.3.5)《深入理解Nginx》(陶辉)
原文:https://book.2cto.com/201304/19616.html 可以在Nginx官方网站(http://nginx.org/en/download.html)获取Nginx源码包 ...
- Python-CSS进阶
0. 什么时候该用什么布局 <!-- 定位布局: 以下两种布局不易解决的问题, 盒子需要脱离文档流处理 --> <!-- 浮动布局: 一般有block特性的盒子,水平排列显示 --& ...
- 从html页面中抽取table表格数据
/** * [getDataFromTrElems 获取表格行元素数据] * @param {[Object]} trElems [trs dom] * @param {[String]} type ...
- LeetCode(51):N皇后
Hard! 题目描述: n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问 ...
- Laravel 的文件存储 - Storage
记录一下 Laravel Storage 的常见用法 内容写入磁盘文件 > php artisan tinker >>> use Illuminate\Support\Faca ...
- 格式化输出的方法:%、.format()、f
a = '123'a1 = '456'a2 = '789' %占位符 text = "a=%s"%atext1 = "a=%s,a1=%s,a2=%s"%(a, ...
- ASP.NET Global.asax详解【转】
global.asax是一个文本文件,它提供全局可用代码.这些代码包括应用程序的事件处理程序以及会话事件.方法和静态变量.有时该文件也被称为应用程序文件. global.asax 文件中的任何代码都是 ...
- POJ 1065 Wooden Sticks【贪心】
题意: 有一些木棍,每个有长度和重量,要求把这些木棍排成若干两个属性值均不下降的序列.问至少要分为多少个序列.且要保证排出来的子序列数最少. 思路: ( 9 , 4 ) ,( 2 , 5 ) ,( 1 ...
- POJ 3190 Stall Reservations【贪心】
POJ 3190 题意: 一些奶牛要在指定的时间内挤牛奶,而一个机器只能同时对一个奶牛工作.给你每头奶牛的指定时间的区间(闭区间),问你最小需要多少机器.思路:先按奶牛要求的时间起始点进行从小到大排序 ...
- Educational Codeforces Round 26 E - Vasya's Function
数论题还是好恶心啊. 题目大意:给你两个不超过1e12的数 x,y,定义一个f ( x, y ) 如果y==0 返回 0 否则返回1+ f ( x , y - gcd( x , y ) ); 思路:我 ...