前言

我对差分约束有我个人独特的看法,写这题解既是与大家分享,又算作我对差分约束系统的总结。

浅谈差分约束

对于一些给出形如\(x_i-x_j\leq a\)不等式(差分约束)组,求\(x_t-x_s\)的最大值问题,我们考虑把这些式子移项,变成\(x_i\leq x_j+a\)的形式。我们知道该问题存在解则所有的不等式都应该得到满足。而所有的\(x_i\leq x_j+a\)都得到满足的要求正好与最短路算法中最终结果算出来后的性质\(dis_i\leq dis_j+w_{i,j}\)类似,所以联想到可以用最短路来求解该方程组问题,即把\(\{x_n\}\)当做\(V\),对每个不等式建边\((j,i,a)\),设\(x_s=0\),跑最短路后,\(x_t\)即为最大值(因为xs=0了)。下证方法的正确性,先假设问题有解。

  1. 必要性 算出最短路后根据最短路的性质那么所有的不等式都应该被满足,说明答案是正确的。
  2. 充分性 根据最短路算法的过程\(x_i\)都被它的限制牢牢控制住,且有一个最严格的限制使得\(x_i\)恰好满足它,那么不可能存在比最短路结果更优的解,说明答案是最优的。

综上,算法正确。(谁看出了问题请联系我。)

无解的情况为图中有负环,对应到原问题中就是一个数比它自己大(小)。

分析此题

每个要求就是个差分约束,然后移项令路权为正,发现都是形如\(b\geq a+1\)的形式,与最长路的结果性质类似,故建立最长路模型,用Bellman-Ford(或者LPFA)求解。对小朋友的要求建模:

  1. a比b多:\(a>b \rightarrow a\geq b+1\)
  2. a不少于b:\(a \geq b \rightarrow a \geq b+0\)
  3. a跟b一样:\(a = b \rightarrow a \geq b+0 \& b \geq a+0\)

其余的都是对偶情况。考虑\(x_i>0 \rightarrow x_i\geq x_0+1\)用0节点向1-n连权为1的边,表示每个小朋友都要分到糖,将dis[0]设为0,这样对0节点的差分就是每个小朋友应得的点数。

然后注意无解的情况,最长路无解即有正环。另外输入的时候特判一下约束是否是“a大于a自己”这种类型的,直接输出-1,可以提高程序效率。

代码

#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<ctime>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<algorithm>
#define rg register
#pragma GCC optimize ("O0")
using namespace std;
typedef long long ll;
const int INF=0x7fffffff;
template<class T> inline T read(T&x){
    T data=0;
    int w=1;
    char ch=getchar();
    while(ch!='-'&&!isdigit(ch))
        ch=getchar();
    if(ch=='-')
        w=-1,ch=getchar();
    while(isdigit(ch))
        data=10*data+ch-'0',ch=getchar();
    return x=data*w;
}

const int MAXN=1e5+7;
int n,m;

struct Edge
{
    int to,nx,w;
}E[MAXN*3]; // 0连边还要O(n)空间
int head[MAXN],ecnt;

inline void addedge(int x,int y,int w)
{
    E[++ecnt].to=y,E[ecnt].w=w;
    E[ecnt].nx=head[x],head[x]=ecnt;
}

int num[MAXN],dis[MAXN];
bool inq[MAXN];
queue<int>Q;

inline bool SPFA()
{
    memset(dis,-1,sizeof(dis));
    dis[0]=0;
    Q.push(0);
    inq[0]=1;
    num[0]=1;
    while(!Q.empty())
    {
        int x=Q.front();
        Q.pop();
        inq[x]=0;
        for(rg int i=head[x];i;i=E[i].nx)
        {
            int y=E[i].to;
            if(dis[y]<dis[x]+E[i].w)
            {
                dis[y]=dis[x]+E[i].w;
                if(!inq[y])
                {
                    if(++num[y]>=n) // 一个点最多被松弛n-1次,入队n-1次
                        return 0;
                    Q.push(y);
                    inq[y]=1;
                }
            }
        }
    }
    return 1;
}

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    read(n);read(m);
    for(rg int i=1;i<=m;++i)
    {
        int x,a,b;
        read(x);read(a);read(b);
        if(x==1)
        {
            addedge(a,b,0);
            addedge(b,a,0);
        }
        else if(x==2)
        {
            if(a==b)
            {
                printf("-1");
                return 0;
            }
            addedge(a,b,1);
        }
        else if(x==3)
        {
            addedge(b,a,0);
        }
        else if(x==4)
        {
            if(a==b)
            {
                printf("-1");
                return 0;
            }
            addedge(b,a,1);
        }
        else if(x==5)
        {
            addedge(a,b,0);
        }
    }
    for(rg int i=n;i>=1;--i)
        addedge(0,i,1);
//  cerr<<"build end"<<endl;
    if(!SPFA())
        printf("-1");
    else
    {
        ll ans=0;
        for(rg int i=1;i<=n;++i)
            ans+=dis[i];
        printf("%lld",ans);
    }
//  fclose(stdin);
//  fclose(stdout);
    return 0;
}

Hint

ans要开long long,0节点向1-n连边要逆序,因为根据讨论

这个题原数据有一个点是一个十万的链

可以卡掉SPFA。

LG3275 【[SCOI2011]糖果】的更多相关文章

  1. bzoj2330: [SCOI2011]糖果

    2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MB Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友 ...

  2. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  3. bzoj 2330 [SCOI2011]糖果(差分约束系统)

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3574  Solved: 1077[Submit][Status ...

  4. BZOJ 2330: [SCOI2011]糖果( 差分约束 )

    坑爹...要求最小值要转成最长路来做.... 小于关系要转化一下 , A < B -> A <= B - 1 ------------------------------------ ...

  5. [luogu P3275] [SCOI2011]糖果

    [luogu P3275] [SCOI2011]糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些 ...

  6. P3275 [SCOI2011]糖果 && 差分约束(二)

    学习完了差分约束是否有解, 现在我们学习求解最大解和最小解 首先我们回想一下是否有解的求解过程, 不难发现最后跑出来任意两点的最短路关系即为这两元素的最短路关系. 即: 最后的最短路蕴含了所有元素之间 ...

  7. [Luogu 3275] SCOI2011 糖果

    [Luogu 3275] SCOI2011 糖果 第一道差分约束.感谢 AZe. 我的理解是根据一些不等关系建一个图,在图上边跑一个最长路(有时候是最短路). 因为可能存在负环,所以必须用 SPFA! ...

  8. BZOJ 2330 SCOI2011糖果 差分约束

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2819  Solved: 820 题目连接 http://www ...

  9. BZOJ2330 SCOI2011 糖果 【差分约束】

    BZOJ2330 SCOI2011 糖果 Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一 ...

  10. 【bzoj2330】: [SCOI2011]糖果 图论-差分约束-SPFA

    [bzoj2330]: [SCOI2011]糖果 恩..就是裸的差分约束.. x=1 -> (A,B,0) (B,A,0) x=2 -> (A,B,1)  [这个情况加个A==B无解的要特 ...

随机推荐

  1. Java正则表达式校验

    package com.study.string; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * 正则表达 ...

  2. Mysql InnoDB三大特性-- 自适应hash index

    Mysql InnoDB三大特性-- 自适应hash index

  3. Linux系统下yum源配置(Centos 6)

    1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2.下载新的CentOS-Base ...

  4. 在CentOS 7上使用Tripwire监控和检测修改的文件

    在CentOS 7上使用Tripwire监控和检测修改的文件 Tripwire是一个免费的开源入侵检测系统(IDS). 它是用于监视和警告系统上文件更改的安全工具. Tripwire是一个功能强大的I ...

  5. Java作业五

    1.编程生成10个1~100之间的随机数,并统计每个数出现的概率. 这个博文里面又random的详细解释:https://www.cnblogs.com/ningvsban/p/3590722.htm ...

  6. mabatis学习(四)----解决字段名与实体类属性名不同的冲突

    在项目开发中,数据库中的字段名不一定和实体类的类名完全相同(当然大小写忽略),那么就可以在sql映射文件中解决此问题 一.创建需要的数据库和表 编写sql脚本,在navicat for mysql中执 ...

  7. 循环神经网络-LSTM进阶

    基础的LSTM模型,单隐层,隐层单神经元,而实际中一般需要更为复杂的网络结构, 下面借用手写数字的经典案例构造比较复杂的LSTM模型,并用代码实现. 单隐层,隐层多神经元 # -*- coding:u ...

  8. HDU - 2819 Swap(二分图最大匹配)

    Given an N*N matrix with each entry equal to 0 or 1. You can swap any two rows or any two columns. C ...

  9. 二分查找(lower_bound和upper_bound)

    转载自:https://www.cnblogs.com/luoxn28/p/5767571.html 1 二分查找 二分查找是一个基础的算法,也是面试中常考的一个知识点.二分查找就是将查找的键和子数组 ...

  10. [Spring]初识Spring-Spring的基础使用-如何通过Bean来实例化?

    Spring框架的基础使用 XML配置信息,Bean的不同实例化方式,注入 实例化 XML文件中的参数设置 1.通过构造器进行实例化(重点,常用方式) <bean name="aCls ...