Tukey‘s test方法 异常值
如何计算异常值
异常值就是和其他样本数据有显著差异的值。这个词在统计学中经常用到,可以表示数据异常或测量错误。明白算异常值的方法,对于正确理解数据非常有用,而且会引出更精确的结论。以下介绍一个很简单的算异常值的过程和方法。
# 引用numpy模块
import numpy as np #求数组a的中位数
np.median(a) #求数组a的四分位数
np.percentile(a, [25, 50, 75])


步骤
了解如何认出潜在异常值。计算之前先辨认数据中的潜在异常值。比如一列数据,表示的是房间内12个东西的温度。如果其中11个的温度在70华氏度(21摄氏度左右)内,第12个却跑到300华氏度(约150摄氏度)了,那你可以粗略判断这是一个异常值。
把数据从小到大排列。以以上数据为例,继续考虑房间内物体温度: {71, 70, 73, 70, 70, 69, 70, 72, 71, 300, 71, 69},变更顺序为: {69, 69, 70, 70, 70, 70, 71, 71, 71, 72, 73, 300}.
计算中位数。中位数是一串数据中间的一个数据点,如果数据总数是偶数,那么中间两位数的平均数就是中位数。上面数据中,中间两项是70、71,则中位数是((70 + 71) / 2)或70.5
计算下四分位数,这里设置为Q1,表示总数据最小的25%的数据在这个点以下。在上面例子中,又有两个数据要被平分,即((70 + 70) / 2) 或 70
计算上四分位数,设置为Q3,表示最大的25%数据都在这个点以上。本例子中Q3 是71、72的平均数,即 71.5
找出数据的“内围”。第一步是把Q1和Q3的差(四分位差)乘以1.5。上面的例子中,四分位差是(71.5 - 70)得 1.5。再乘以1.5 得 2.25 ,加上Q3 ,用Q1 减去这个和,得到内围。本例中内围是67.75 and 73.75.- 任何在这个范围外的数字都是“平稳界外值”。本例子中,只有300华氏度是在范围以外的,即是所谓的平稳界外值。
找出数据外围。和内围方法类似,不过这里要将四分位差乘以3 而非1.5。乘以3即(1.5 * 3) 得到 4.5。得到外围是65.5 、 76- 任何这个范围以外的数字,都算是“极端界外值”,300度也在这个范围外,因此也算“极端界外值”
Tukey‘s test方法 异常值的更多相关文章
- Bonferroni校正法
Bonferroni校正:如果在同一数据集上同时检验n个独立的假设,那么用于每一假设的统计显著水平,应为仅检验一个假设时的显著水平的1/n http://baike.baidu.com/view/12 ...
- 数据挖掘实战<1>:数据质量检查
数据行业有一句很经典的话--"垃圾进,垃圾出"(Garbage in, Garbage out, GIGO),意思就是,如果使用的基础数据有问题,那基于这些数据得到的任何产出都是没 ...
- 数据准备<1>:数据质量检查-理论篇
数据行业有一句很经典的话--"垃圾进,垃圾出"(Garbage in, Garbage out, GIGO),意思就是,如果使用的基础数据有问题,那基于这些数据得到的任何产出都是没 ...
- 探索性数据分析EDA综述
目录 1. 数据探索的步骤和准备 2. 缺失值处理 为什么需要处理缺失值 Why data has missing values? 缺失值处理的技术 3. 异常值检测和处理 What is an ou ...
- javaSE27天复习总结
JAVA学习总结 2 第一天 2 1:计算机概述(了解) 2 (1)计算机 2 (2)计算机硬件 2 (3)计算机软件 2 (4)软件开发(理解) 2 (5) ...
- 异常值监测的方法 Tukey test
参考: https://www.zhihu.com/question/38066650
- pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)
pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...
- kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...
- 异常值检测方法(Z-score,DBSCAN,孤立森林)
机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&sh ...
随机推荐
- PP生产订单成本的计划、控制和结算
SAP系统成本分析功能关注订单的成本,通过对计划成本和实际成本的比较分析,可以发现成本控制上的问题,以便及时解决问题.1.订单成本计划在基础数据齐全的基础上,系统可以自动滚算生产订单的成本.生产订单计 ...
- jdk1.8 HashMap红黑树操作详解-putTreeVal()
以前也看过hashMap源码不过是看的jdk1.7的,由于时间问题看的也不是太深入,只是大概的了解了一下他的基本原理:这几天通过假期的时间就对jdk1.8的hashMap深入了解了下,相信大家都是对红 ...
- face parsing
主页:https://www.sifeiliu.net/project 基于CNN face parsing: https://www.sifeiliu.net/face-parsing codes: ...
- Uva10474-STL水题-白书
白书的一道水题.话说好久没认真做难题了.今天出了排名,所有队伍里倒数第一啊! 代码没什么可说的了. #include <algorithm> #include <cstring> ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- pandas的筛选功能,跟excel的筛选功能类似,但是功能更强大。
Select rows from a DataFrame based on values in a column -pandas 筛选 https://stackoverflow.com/questi ...
- 洛谷 P4408 逃学的小孩 解题报告
P4408 [NOI2003]逃学的小孩 题目描述 Chris家的电话铃响起了,里面传出了Chris的老师焦急的声音:"喂,是Chris的家长吗?你们的孩子又没来上课,不想参加考试了吗?&q ...
- wildfly jobss 同时连接多个数据源 datasource xa-datasource
由于需要从一个远程机器取数据.处理后保存到本地数据库处理.用 wildfly datasource 会报: [com.arjuna.ats.arjuna] (default task-6) ARJUN ...
- 【UR #17】滑稽树前做游戏
假装看懂的样子 假装会做的样子 UOJ Round #17 题解 加上一个(t-w)^c,c是和i相连的点的度数 是一个多项式的话可以归纳证明 一些具体实现: 多项式存储,保留t,y, f=ai*t^ ...
- KMP 模式串匹配 失去匹配的瞬间你还有什么
KMP: KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法).KMP算法的关键 ...