国际惯例的题面:

这种维护排序序列,严格大于的进行操作的题都很套路......
我们按照[0,k],(k,2k],(2k,inf)分类讨论一下就好。
显然第一个区间的不会变化,第二个区间的会被平移进第一个区间,第三个区间的相对大小不会变化。
于是我们直接把第二个区间拆了重构,一个一个插入第一个区间即可。因为每次这样做最少减半,所以每个元素只会被重构log次,复杂度nlog^2n。
这种按照值域分离区间的操作,非旋转treap实现起来是最简单的......
然而第一次写非旋转treap还是出了一点问题,注意它的插入是通过按照值域分裂,新建点,再进行两次合并实现的。直接插入复杂度不对。
另外区间值域存在重合的情况两个treap不能直接合并......
我写的判定size的版本复杂度好像不对(不如暴力快?),于是只好预先生成fix值。

代码:

 #include<cstdio>
#include<algorithm>
#include<cstdlib>
const int maxn=1e5+1e2; typedef std::pair<int,int> pii;
__inline pii mp(const int &x,const int &y) { return std::make_pair(x,y); } int seq[maxn],sql;
int stk[maxn],top; struct Treap {
int lson[maxn],rson[maxn],lazy[maxn],val[maxn],siz[maxn],fix[maxn],cnt; inline void init(int n) {
for(int i=;i<=n;i++) fix[i] = i;
std::random_shuffle(fix+,fix++n);
}
inline void apply(int pos,int x) {
if(pos) lazy[pos] += x , val[pos] -= x;
}
inline void push(int pos) {
if( lazy[pos] ) apply(lson[pos],lazy[pos]) , apply(rson[pos],lazy[pos]) , lazy[pos] = ;
}
inline void maintain(int pos) {
siz[pos] = siz[lson[pos]] + siz[rson[pos]] + ;
} inline pii split(int pos,int dv) { // left is <= , right is > .
if( !pos ) return mp(,);
push(pos);
if( dv < val[pos] ) {
pii spl = split(lson[pos],dv);
lson[pos] = spl.second , maintain(pos);
return mp(spl.first,pos);
} else {
pii spr = split(rson[pos],dv);
rson[pos] = spr.first , maintain(pos);
return mp(pos,spr.second);
}
}
inline int merge(int x,int y) {
if( !x || !y ) return x | y;
push(x) , push(y);
if( val[x] > val[y] ) std::swap(x,y);
if( fix[x] > fix[y] ) { // siz[x] is bigger .
lson[y] = merge(lson[y],x) , maintain(y);
return y;
} else {
rson[x] = merge(rson[x],y) , maintain(x);
return x;
}
}
inline void dfs(int pos) {
if( !pos ) return;
seq[++sql] = val[pos] , push(pos);
dfs(lson[pos]) , dfs(rson[pos]);
lson[pos] = rson[pos] = siz[pos] = , stk[++top] = pos;
}
inline int kth(int pos,int k) { // return the kth value .
if( k == siz[lson[pos]] + ) return val[pos];
return push(pos) , k <= siz[lson[pos]] ? kth(lson[pos],k) : kth(rson[pos],k-siz[lson[pos]]-);
}
inline void insert(int &root,int x) {
val[++cnt] = x , siz[cnt] = ;
pii sp = split(root,x);
root = merge(sp.first,cnt) , root = merge(root,sp.second);
}
inline void reinsert(int &root,int x) {
int cur = stk[top--];
val[cur] = x , siz[cur] = ;
pii sp = split(root,x);
root = merge(sp.first,cur) , root = merge(root,sp.second);
} }tp; int main() {
static int n,m,root,rtl,rtm,rtr;
scanf("%d%d",&n,&m) , tp.init(n);
for(int i=,t;i<=n;i++) scanf("%d",&t) , tp.insert(root,t);
for(int i=,o,x;i<=m;i++) {
scanf("%d%d",&o,&x);
if( o == ) printf("%d\n",tp.kth(root,x));
else if( o == ) {
pii sp = tp.split(root,x);
rtl = sp.first , sp = tp.split(sp.second,x<<);
rtm = sp.first , rtr = sp.second;
sql = , tp.dfs(rtm) , tp.apply(rtr,x);
for(int i=;i<=sql;i++) tp.reinsert(rtl,seq[i]-x);
root = tp.merge(rtl,rtr);
}
}
return ;
}

Thupc被拒了好气啊!我们队可是有yzy大爷的!(即使这样都被拒了,一看就是我太菜了)

ありのままでいればいつも
只要坚守自我维持现状
あるべき私かここにいると
自己希望成为的样貌就存在于此
信じてまた 新しい夢を
不要放弃希望 崭新的梦想
精一杯描き出せばいい
再次奋力地去描绘就好
そう気づき始めたよ私
是啊 而我开始意识到
みんなとただ笑ってる未来を
大家单纯地绽放笑容的未来
夢見て
诚心盼望

4923: [Lydsy1706月赛]K小值查询 平衡树 非旋转Treap的更多相关文章

  1. BZOJ 4923: [Lydsy1706月赛]K小值查询 Splay + 思维

    Description 维护一个长度为n的正整数序列a_1,a_2,...,a_n,支持以下两种操作: 1 k,将序列a从小到大排序,输出a_k的值. 2 k,将所有严格大于k的数a_i减去k. In ...

  2. [BZOJ 4923][Lydsy1706月赛]K小值查询

    传送门 势能分析平衡树,splay或treap都可以 放个指针版的就跑 #include <bits/stdc++.h> using namespace std; #define rep( ...

  3. [BZ4923][Lydsy1706月赛]K小值查询

    K小值查询 题面 维护一个长度为n的正整数序列a_1,a_2,...,a_n,支持以下两种操作: 1 k,将序列a从小到大排序,输出a_k的值. 2 k,将所有严格大于k的数a_i减去k. Input ...

  4. BZOJ4923:[Lydsy1706月赛]K小值查询(Splay)

    Description 维护一个长度为n的正整数序列a_1,a_2,...,a_n,支持以下两种操作: 1 k,将序列a从小到大排序,输出a_k的值. 2 k,将所有严格大于k的数a_i减去k. In ...

  5. BZOJ4923 [Lydsy1706月赛]K小值查询

    题意 维护一个长度为n的正整数序列a_1,a_2,...,a_n,支持以下两种操作: 1 k,将序列a从小到大排序,输出a_k的值. 2 k,将所有严格大于k的数a_i减去k. \(n \leq 10 ...

  6. BZOJ3224普通平衡树——非旋转treap

    题目: 此为平衡树系列第一道:普通平衡树您需要写一种数据结构,来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3. 查询x数的排名(若有多个相同的数, ...

  7. BZOJ3223文艺平衡树——非旋转treap

    此为平衡树系列第二道:文艺平衡树您需要写一种数据结构,来维护一个有序数列,其中需要提供以下操作: 翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 ...

  8. [bzoj3065] 带插入区间第k小值 [重量平衡树套线段树]

    题面 传送门 思路 发现强制在线了...... 本来可以树套树解决的问题,现在外层不能使用线段树了,拿什么替代呢? 我们需要一种支持单点插入.下套数据结构.数据结构上传合并复杂度最多单log,不能旋转 ...

  9. [bzoj4923]K小值查询

    来自FallDream的博客,未经允许,请勿转载,谢谢. 维护一个长度为n的正整数序列a_1,a_2,...,a_n,支持以下两种操作: 1 k,将序列a从小到大排序,输出a_k的值. 2 k,将所有 ...

随机推荐

  1. LogParse-Windows系统日志分析

    Windows系统日志分析 一.前言 本文将对常见的日志类型,利用微软日志分析工具(LogParser)结合已经掌握的恶意代码分析Windows系统日志,关联出系统的异常. 数据来源于Windows的 ...

  2. Linux内存管理5---物理内存管理

    1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本 ...

  3. BootStrap学习从现在开始

    前言 原文链接 http://aehyok.com/Blog/Detail/6.html 当下最流行的前端开发框架Bootstrap,可大大简化网站开发过程,从而深受广大开发者的喜欢.本文总结了Boo ...

  4. hdu 4348 To the moon (主席树区间更新)

    传送门 题意: 一个长度为n的数组,4种操作 : (1)C l r d:区间[l,r]中的数都加1,同时当前的时间戳加1 . (2)Q l r:查询当前时间戳区间[l,r]中所有数的和 . (3)H ...

  5. tomcat jetty

    背景 其实这个比较毫无意义.只是当时突然知道了jetty,所以记下来,对于开发人员来说选择哪个一般意义不大. 转载 从架构上来看 Tomcat 在处理少数非常繁忙的连接上更有优势,也就是说连接的生命周 ...

  6. linux windows 传输文件

    其中两种方式,当然,只是我自己试验的两个,其实还有别的方法,但是我也懒得实践了. 1  pscp c:\abc.sql root@192.168.1.1:/home/person/hww 2  Lrz ...

  7. position:absolute在IE8浏览器下无法显示正确位置

      在网页head下添加 <meta http-equiv="x-ua-compatible" content="ie=8" />

  8. 谁说前端不需要懂-Nginx反向代理与负载均衡

    转:https://juejin.im/post/5b01336af265da0b8a67e5c9 学到老活到老 前端圈一直很新,一直要不停的学习,而且在进入大厂的路上,还要求熟悉一门后台语言等等.用 ...

  9. HTTP 1.1学习笔记

    前言 由于HTTP 1自身的局限性,它不能很好的为用户提供性能良好的WEB服务.于1999年6月正式发布了HTTP1.1标准REC2616,它厘清了之前版本中很多有歧义的地方,而且还新增了很多重要的优 ...

  10. splay好板子

    找到一份比较好的板子,链接https://blog.csdn.net/crazy_ac/article/details/8034190 #include<cstdio> #include& ...