独树一帜的字符串匹配算法——RK算法
参加了雅虎2015校招,笔试成绩还不错,谁知初面第一题就被问了个字符串匹配,要求不能使用KMP,但要和KMP一样优,当时瞬间就呵呵了。后经过面试官的一再提示,也还是没有成功在面试现场写得。现将该算法记录如下,思想绝对是字符串匹配中独树一帜的
字符串匹配
存在长度为n的字符数组S[0...n-1],长度为m的字符数组P[0...m-1],是否存在i,使得SiSi+1...Si+m-1等于P0P1...Pm-1,若存在,则匹配成功,若不存在则匹配失败。
RK算法思想
假设我们有某个hash函数可以将字符串转换为一个整数,则hash结果不同的字符串肯定不同,但hash结果相同的字符串则很有可能相同(存在小概率不同的可能)。
算法每次从S中取长度为m的子串,将其hash结果与P的hash结果进行比较,若相等,则有可能匹配成功,若不相等,则继续从S中选新的子串进行比较。
假设进行下面的匹配:
S0 | S1 | ... | Si-m+1 | Si-m+2 | ... | Si-1 | Si | Si+1 | ... | Sn-1 |
P0 | P1 | Pm-2 | Pm-1 |
情况一、hash(Si-m+1...Si) == hash(P0...Pm-1),此时Si-m+1...Si与P0...Pm-1有可能匹配成功。只需要逐字符对比就可以判断是否真的匹配成功,若匹配成功,则返回匹配成功点的下标i-m+1,若不成功,则继续取S的子串Si-m+2...Si+1进行hash
情况二、hash(Si-m+1...Si) != hash(P0...Pm-1),此时Si-m+1...Si与P0...Pm-1不可能匹配成功,所以继续取S的子串Si-m+2...Si+1进行hash
可以看出,不论情况一还是情况二,都涉及一个共同的步骤,就是继续取S的子串Si-m+2...Si+1进行hash。如果每次都重新求hash结果的话,复杂度为O(m),整体复杂度为O(mn)。如果可以利用上一个子串的hash结果hash(Si-m+1...Si),在O(1)的时间内求出hash(Si-m+2...Si+1),则可以将整体复杂度降低到线性时间
至此,问题的关键转换为如何根据hash(Si-m+1...Si),在O(1)的时间内求出hash(Si-m+2...Si+1)
设计hash函数为:hash(Si-m+1...Si) = Si-m+1*xm-1 + Si-m+2*xm-2 + ... + Si-1*x + Si
则 hash(Si-m+2...Si+1) = Si-m+2*xm-1 + Si-m+3*xm-2 + ... + Si*x + Si+1
= (hash(Si-m+1...Si) - Si-m+1*xm-1) * x + Si+1
hash结果过大怎么办?对某个大素数取余数即可(经典方法),称其为HASHSIZE
所以,hash函数更新为:hash(Si-m+1...Si) = (Si-m+1*xm-1 + Si-m+2*xm-2 + ... + Si-1*x + Si) % HASHSIZE
则 hash(Si-m+2...Si+1) = (Si-m+2*xm-1 + Si-m+3*xm-2 + ... + Si*x + Si+1) % HASHSIZE
= ((hash(Si-m+1...Si) - Si-m+1*xm-1) * x + Si+1) % HASHSIZE
设计算法时需要注意的几点:
1、可提前计算出hash(P0...Pm-1)和xm-1并保存
2、char c 的取值范围为0~255,计算hash结果时会自动类型提升为int,为避免符号位扩展,使用 (unsigned int)c & 0x000000FF
3、hash(Si-m+1...Si) - Si-m+1*xm-1 的结果可能为负数,需先加上 Si-m+1*HASHSIZE 并最后 % HASHSIZE 来保证结果非负
具体代码如下:
#define UNSIGNED(x) ((unsigned int)x & 0x000000FF)
#define HASHSIZE 10000019 int hashMatch(char* s, char* p) {
int n = strlen(s);
int m = strlen(p);
if (m > n || m == || n == )
return -;
// sv为S子串的hash结果,pv为字符串p的hash结果,base为x的m-1次方
unsigned int sv = UNSIGNED(s[]), pv = UNSIGNED(p[]), base = ;
int i, j;
// 初始化 sv, pv, base
for (i = ; i < m; i++) {
pv = (pv * + UNSIGNED(p[i])) % HASHSIZE;
sv = (sv * + UNSIGNED(s[i])) % HASHSIZE;
base = (base * ) % HASHSIZE;
}
i = m - ;
do {
// 情况一、hash结果相等
if (sv == pv) {
for (j = ; j < m && s[i - m + + j] == p[j]; j++)
;
if (j == m)
return i - m + ;
}
i++;
if (i >= n)
break;
// O(1)时间更新S子串的hash结果
sv = (sv + UNSIGNED(s[i - m]) * (HASHSIZE - base)) % HASHSIZE;
sv = (sv * + UNSIGNED(s[i])) % HASHSIZE;
} while (i < n); return -;
}
时间复杂度分析:循环复杂度O(n),hash结果相等时的逐字符匹配复杂度为O(m),整体时间复杂度为O(m+n)。空间复杂度为O(1)
运行时间PK
随机生成10亿字节(1024*1024*1023)的字符串保存到文件num.txt中,读出到字符串S中,P长度为1024*10字节,分别使用RK算法和KMP算法进行实验
从文件num.txt中读取字符串到S中所需时间为:
匹配成功时,RK算法匹配所需时间为:
匹配成功时,KMP算法匹配所需时间为:
匹配不成功时,RK算法匹配所需时间为:
匹配不成功时,KMP算法匹配所需时间为:
可以看出,RK算法和KMP算法均可以在线性时间内完成匹配,RK算法时间稍慢的原因主要有两点,一是数学取模运算,二是hash结果相同不一定完全匹配,需要再逐字符进行对比。统计hash结果相等但字符串不一定匹配的情况发现,匹配不成功时有105次hash结果相等但字符串不匹配的情况。S中长度为10239的子串个数大约为10亿,所以hash结果相等但不匹配的概率大约为一千万分之一(刚好约等于1/HASHSIZE),所以时间复杂度精确值应为O(n) + O(m*n/HASHSIZE)。
算法优化
在上面的测试中RK算法还是慢于KMP的,优化从两点出发:一是用其他运算代替取模运算,二是降低hash冲突。
先解决降低冲突的问题,在之前的代码中,我们使用了x=10,假设存在char值为2,20,200的三个字符a,b,c,可以发现a*1000,b*100,c*10的hash结果是相同的,也就是发生了冲突,所以取大于等于256的数做x则可以避免这种冲突。另外HASHSIZE的大小也会决定冲突发生的概率,HASHSIZE最大可以多大呢?对于unsigned int来说,总共有2^32次方个,所以可以取HASHSIZE为2^32次方。而计算机对于大于等于2^32次方的数会自动舍弃高位,其刚好等价于对2^32次方取模,即对HASHSIZE取模,所以便可以从代码中去掉取模运算。
优化后的代码如下(代码中d即上文中的x):
#define UNSIGNED(x) ((unsigned char)x)
#define d 257 int hashMatch(char* s, char* p) {
int n = strlen(s);
int m = strlen(p);
if (m > n || m == || n == )
return -;
// sv为s子串的hash结果,pv为p的hash结果,base为d的m-1次方
unsigned int sv = UNSIGNED(s[]), pv = UNSIGNED(p[]), base = ;
int i, j;
int count = ;
// 初始化sv, pv, base
for (i = ; i < m; i++) {
pv = pv * d + UNSIGNED(p[i]);
sv = sv * d + UNSIGNED(s[i]);
base = base * d;
}
i = m - ;
do {
// 情况一,hash结果相等
if (!(sv ^ pv)) {
for (j = ; j < m && s[i - m + + j] == p[j]; j++)
;
if (j == m)
return i - m + ;
}
i++;
if (i >= n)
break;
// O(1)时间内更新sv, sv + UNSIGNED(s[i - m]) * (~base + 1)等价于sv - UNSIGNED(s[i - m]) * base
sv = (sv + UNSIGNED(s[i - m]) * (~base + )) * d + UNSIGNED(s[i]);
} while (i < n); return -;
}
匹配成功时,优化后RK算法匹配所需时间为:
匹配不成功时,优化后RK算法匹配所需时间为:
可以看出,优化后的RK算法已经在时间上优于KMP了。而且大小为2^32次方的HASHSIZE也保证了S的10亿个子串基本不会发生冲突。
独树一帜的字符串匹配算法——RK算法的更多相关文章
- 字符串匹配算法 -- Rabin-Karp 算法
字符串匹配算法 -- Rabin-Karp 算法 参考资料 1 算法导论 2 lalor 3 记忆碎片 Rabin-karp 算法简介 在实际应用中,Rabin-Karp 算法对字符串匹配问题能较好的 ...
- 字符串匹配算法——KMP算法
处理字符串的过程中,难免会遇到字符匹配的问题.常用的字符匹配方法 1. 朴素模式匹配算法(Brute-Force算法) 求子串位置的定位函数Index( S, T, pos). 模式匹配:子串的定位操 ...
- 字符串匹配算法——KMP算法学习
KMP算法是用来解决字符串的匹配问题的,即在字符串S中寻找字符串P.形式定义:假设存在长度为n的字符数组S[0...n-1],长度为m的字符数组P[0...m-1],是否存在i,使得SiSi+1... ...
- 字符串匹配算法KMP算法
数据结构中讲到关于字符串匹配算法时,提到朴素匹配算法,和KMP匹配算法. 朴素匹配算法就是简单的一个一个匹配字符,如果遇到不匹配字符那么就在源字符串中迭代下一个位置一个一个的匹配,这样计算起来会有很多 ...
- [Algorithm] 字符串匹配算法——KMP算法
1 字符串匹配 字符串匹配是计算机的基本任务之一. 字符串匹配是什么?举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串& ...
- 字符串匹配算法-kmp算法
一原理: 部分转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html 字 ...
- 字符串匹配算法--Brute-Force算法
Brute-Force(暴力)算法是字符串匹配中最简单也是最容易理解的算法. 主要思想是 按顺序遍历母串,将每个字符作为匹配的起始字符,判断是否匹配字串.若第一个字符与字串匹配,则比较下一个字符,否则 ...
- Python 细聊从暴力(BF)字符串匹配算法到 KMP 算法之间的精妙变化
1. 字符串匹配算法 所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串.如在字符串 "ABCDEFG" 中查找是否存在 "EF" ...
- Sunday算法:字符串匹配算法进阶
背景 我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是\(Ω(m*n)\),也就是达到了字符串匹配效率的下限.于是后来人经过研究,构造出了著名的KMP算法 ...
随机推荐
- android 多个listView的向下滚动设置 listView动态设置高度代码
墨迹天气图: 这里都是用的android里面的shape实现的,实现起来比较简单,只是在滚动的时候有点小麻烦... 当我们多个ListView超出了它的父控件LinearLayout的时候,它们每个L ...
- highcharts 柱形堆叠图
<!doctype html> <html lang="en"> <head> <script type="text/javas ...
- coco2d-js 多屏适配相关API
setDesignResolutionSize() //设计分辨率大小及模式 setContentScaleFactor() //内容缩放因子 setSearchPaths() //资源搜索路径 g ...
- WPF中动态添加xaml资源文件
一.新建一个资源文件,然后设置其Build Actoin(生成操作)为Resource(资源): 二.在App.xaml.cs的StartUp事件或者是你需要的时机代码段写上如下代码: Resourc ...
- Spring中的实例生成方式及其生命周期
三种实例化bean的方式1.使用类构造器实例化 <!-- 使用类构造器实例化,class属性表示要使用的类的全限定名 --> <bean id="userDao1" ...
- 基于redis实现的分布式锁
基于redis实现的分布式锁 我们知道,在多线程环境中,锁是实现共享资源互斥访问的重要机制,以保证任何时刻只有一个线程在访问共享资源.锁的基本原理是:用一个状态值表示锁,对锁的占用和释放通过状态值来标 ...
- 浩顺AC671指纹考勤机二次开发(demo)
关于考勤机 AC671,是新换的机器,以前的那部机器,通过网络死活连接不上,换了AC671网络连接是好用了.但是,我要吐槽 浩顺的考勤机应该是卖了很多了吧,可是自带的软件太不给力,最后分析出来的数据一 ...
- 去除html标签 正则 <.+?> 解释
http://baike.baidu.com/link?url=2zORJF9GOjU8AkmuHDLz9cyl9yiL68PdW3frayzLwWQhDvDEM51V_CcY_g1mZ7OPdcq8 ...
- Linux内核与根文件系统的关系1
Linux内核与根文件系统的关系开篇题外话:对于Linux初学者来说,这是一个很纠结的问题,但这也是一个很关键的问题!一语破天机: “尽管内核是 Linux 的核心,但文件却是用户与操作系统交互所采用 ...
- C# List中写出LINQ类似SQL的语句
很多时候,从一个关系表中挑出一个我们需要的元素列表采用SQL语句是再容易不过的了,其实C#的List中也可以采用类似的方法,虽然List中集成了Select(), Where()等语句,不过如果你的判 ...