SGU 104
104. Little shop of flowers
time limit per test: 0.25 sec.
memory limit per test: 4096
KB
PROBLEM
You want to arrange the window of your flower shop in a most pleasant way. You have F bunches
of flowers, each being of a different kind, and at least as many vases
ordered in a row. The vases are glued onto the shelf and are numbered
consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F.
These id-numbers have a significance: They determine the required order
of appearance of the flower bunches in the row of vases so that the
bunch i must be in a vase to the left of the vase containing bunch j whenever i < j.
Suppose, for example, you have bunch of azaleas (id-number=1), a bunch
of begonias (id-number=2) and a bunch of carnations (id-number=3). Now,
all the bunches must be put into the vases keeping their id-numbers in
order. The bunch of azaleas must be in a vase to the left of begonias,
and the bunch of begonias must be in a vase to the left of carnations.
If there are more vases than bunches of flowers then the excess will be
left empty. A vase can hold only one bunch of flowers.
Each vase has a distinct characteristic (just like
flowers do). Hence, putting a bunch of flowers in a vase results in a
certain aesthetic value, expressed by an integer. The aesthetic values
are presented in a table as shown below. Leaving a vase empty has an
aesthetic value of 0.
|
V A S E S |
||||||
|
1 |
2 |
3 |
4 |
5 |
||
|
Bunches |
1 (azaleas) |
7 |
23 |
-5 |
-24 |
16 |
|
2 (begonias) |
5 |
21 |
-4 |
10 |
23 |
|
|
3 (carnations) |
-21 |
5 |
-4 |
-20 |
20 |
|
According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.
To achieve the most pleasant effect you have to
maximize the sum of aesthetic values for the arrangement while keeping
the required ordering of the flowers. If more than one arrangement has
the maximal sum value, any one of them will be acceptable. You have to
produce exactly one arrangement.
ASSUMPTIONS
- 1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
- F ≤ V ≤ 100 where V is the number of vases.
- -50 £
Aij £
50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.
Input
- The first line contains two numbers: F, V.
- The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.
Output
- The first line will contain the sum of aesthetic values for your arrangement.
- The second line must present the arrangement as a list of F numbers, so that the k’th number on this line identifies the vase in which the bunch k is put.
Sample Input
3 5
7 23 -5 -24 16
5 21 -4 10 23
-21 5 -4 -20 20
Sample Output
53
2 4 5 水dp,设dp[i][j]为当前第i种朵花放入第j个花瓶的最大价值,mx[i][j] 为 max(dp[i][k]) ( 1=<k<=j)
则状态方程为 dp[i][j] = a[i][j] + mx[i - 1][j - 1];
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std; #define maxn 105 #define INF 100 int dp[maxn],mx[maxn],a[maxn][maxn],mxid[maxn],fa[maxn][maxn];
int ans[maxn];
int f,v,len = ; void solve() { for(int i = ; i <= f; i++) {
for(int j = i; j <= v; j++) {
dp[j] = a[i][j] + (j == ? : mx[j - ]);
fa[i][j] = j == ? : mxid[j - ];
}
for(int j = i; j <= v; j++) {
mx[j] = mx[j - ];
mxid[j] = mxid[j - ];
if(mx[j] < dp[j] || j == i) {
mx[j] = dp[j];
mxid[j] = j;
}
}
/*for(int j = 1; j <= v; j++) {
printf("%d ",mxid[j]);
}
printf("\n");*/
} } void output() {
int id = f,_max = dp[f];
for(int i = f + ; i <= v; i++) {
if(_max < dp[i]) {
_max = dp[i];
id = i;
}
} printf("%d\n",dp[id]);
len = f;
for(int u = id; len >= ; u = fa[len + ][u]) {
ans[len--] = u;
} printf("%d",ans[]);
for(int i = ; i <= f; i++) {
printf(" %d",ans[i]);
}
printf("\n");
} int main()
{
// freopen("sw.in","r",stdin); scanf("%d%d",&f,&v); for(int i = ; i <= f; i++) {
for(int j = ; j <= v; j++) {
scanf("%d",&a[i][j]);
}
} solve(); output(); //cout << "Hello world!" << endl;
return ;
}
SGU 104的更多相关文章
- sgu 104 Little shop of flowers 解题报告及测试数据
104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...
- SGU 104. Little shop of flowers (DP)
104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...
- SGU 104 Little shop of flowers【DP】
浪(吃)了一天,水道题冷静冷静.... 题目链接: http://acm.sgu.ru/problem.php?contest=0&problem=104 题意: 给定每朵花放在每个花盆的值, ...
- 动态规划(方案还原):SGU 104 Little shop of flowers
花店橱窗布置问题 时间限制:3000 ms 问题描述(Problem) 假设你想以最美观的方式布置花店的橱窗,你有F束花,每束花的品种都不一样,同时,你至少有同样数量的花瓶,被按顺序摆成一行.花 ...
- 【SGU 104】Little shop of flowers
题意 每个花按序号顺序放到窗口,不同窗口可有不同观赏值,所有花都要放上去,求最大观赏值和花的位置. 分析 dp,dp[i][j]表示前i朵花最后一朵在j位置的最大总观赏值. dp[i][j]=max( ...
- sgu 104 Little Shop of Flowers
经典dp问题,花店橱窗布置,不再多说,上代码 #include <cstdio> #include <cstring> #include <iostream> #i ...
- Little shop of flowers - SGU 104 (DP)
题目大意:把 M 朵花插入 N 个花瓶中,每个花插入不同的花瓶都有一个价值A[Mi][Nj],要使所有的花都插入花瓶,求出来最大的总价值(花瓶为空时价值是0). 分析:dp[i][j]表示前i朵花插入 ...
- SGU刷题之路开启
VJ小组:SGU---48h/题 每道做出的题目写成题解,将传送门更新在这里. SGU:101 - 200 SGU - 107 水题 解题报告 SGU - 105 找规律水题 解题报告 SGU - 1 ...
- SGU 乱搞日志
SGU 100 A+B :太神不会 SGU 101 Domino: 题目大意:有N张骨牌,两张骨牌有两面有0到6的数字,能相连当且仅当前后数字相同,问能否有将N张骨牌连接的方案?思路:裸的欧拉回路,注 ...
随机推荐
- C 基于UDP实现一个简易的聊天室
引言 本文是围绕Linux udp api 构建一个简易的多人聊天室.重点看思路,帮助我们加深 对udp开发中一些api了解.相对而言udp socket开发相比tcp socket开发注意的细节要少 ...
- Android--获取使用的总流量和每个App的上传、下载的流量
获得每个App的上传.下载的流量. 思路就是获取到我们手机上的所有app,再获得app里面使用的权限,如果app有网络权限,就显示出来. 代码很简单,代码里面也有比较详细的注释,下面直接上代码 布局文 ...
- Python: 迭代器与生成器小结
迭代器与生成器的区别: 1. 迭代器由Class对象创建. 生成器由包含yield表达的Function对象或者Generator Expression创建. 2. 迭代器的原理: (1)由Itera ...
- Your First ASP.NET 5 Application on a Mac
Your First ASP.NET 5 Application on a Mac By Daniel Roth, Steve Smith, Rick Anderson ASP.NET 5 is cr ...
- iOS学习之事件处理
一.事件的基本概念 1.事件概述 事件是当用户手指触击屏幕及在屏幕上移动时,系统不断发送给应用程序的对象. 系统将事件按照特定的路径传递给可以对其进行处理的对象. 在iOS汇总,一个UITo ...
- NSKeyValueObserving(KVO)
NSKeyValueObserving非正式协议定义了一种机制,它允许对象去监听其它对象的某个属性的修改. 我们可以监听一个对象的属性,包括简单属性,一对一的关系,和一对多的关系.一对多关系的监听者会 ...
- IOS内存管理「3」- 自动释放的基本概念和用法
- [转]Reed Solomon纠删码
[转]Reed Solomon纠删码 http://peterylh.blog.163.com/blog/static/12033201371375050233/ 纠删码是存储领域常用的 ...
- homework-07 C++ 11 能好怎
大二时候学过c++,但是那只是为了考试在学习,大作业也就写了一个读写者线程同步的模拟,连一个完整的类都没有写过,所以我必须承认对c++了解的很少. 对于C++ 11这一新标准,我首先阅读了来自前C++ ...
- h264码流分析
---------------------------------------------------------------------------------------------------- ...