BZOJ1087[SCOI2005]互不侵犯——状压DP
题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。
输入
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
输出
方案数。
样例输入
样例输出
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long f[12][2000][200];
int cnt;
int n,m;
int s[2000];
int t[2000];
long long ans;
void dfs(int x,int y,int sum)
{
if(y>=n)
{
s[++cnt]=x;
t[cnt]=sum;
return ;
}
dfs(x,y+1,sum);
dfs(x|(1<<y),y+2,sum+1);
}
int main()
{
scanf("%d%d",&n,&m);
dfs(0,0,0);
for(int i=1;i<=cnt;i++)
{
f[1][i][t[i]]=1;
}
for(int i=2;i<=n;i++)
{
for(int j=1;j<=cnt;j++)
{
for(int k=1;k<=cnt;k++)
{
if(s[j]&s[k])
{
continue;
}
if((s[j]<<1)&s[k])
{
continue;
}
if(s[j]&(s[k]<<1))
{
continue;
}
for(int l=t[j];l<=m;l++)
{
f[i][j][l]+=f[i-1][k][l-t[j]];
}
}
}
}
for(int j=1;j<=cnt;j++)
{
ans+=f[n][j][m];
}
printf("%lld",ans);
}
BZOJ1087[SCOI2005]互不侵犯——状压DP的更多相关文章
- P1896 [SCOI2005]互不侵犯 状压dp
正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...
- SCOI2005 互不侵犯 [状压dp]
题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...
- [SCOI2005]互不侵犯 (状压$dp$)
题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...
- luogu1896 [SCOI2005]互不侵犯 状压DP
题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.( 1 <=N <=9, 0 ...
- NOI P1896 互不侵犯 状压DP
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- BZOJ1087 SCOI2005 互不侵犯King 【状压DP】
BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...
- [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...
- 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】
Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...
- [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)
Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...
随机推荐
- parallel方法 异步并行执行
Promise提供了all方法, 但是状态只有2种, 第一种是所有promise实例都成功则返回值组成一个数组,传递给p的回调函数: 第二种是有一个实例被rejected,状态就变成rejected, ...
- php利用自定义key,对数据加解密的方法
客户端和服务端通信时,有个场景很常见,通过一个id作为url参数来回传递.假设现在业务上只有这个id标识,那么需要稍微安全一点的通信,对这个id进行加密传输,到服务端再进行解密.这里需要一个服务端进行 ...
- C# 百度TTS,文本转语音,RestAPI之Get请求
因为用得到,所以作个记录: 代码如下: public class BaiduTTSService : IBaiduTTSService { public string tok = GetBaiduTo ...
- 浅谈左偏树在OI中的应用
Preface 可并堆,一个听起来很NB的数据结构,实际上比一般的堆就多了一个合并的操作. 考虑一般的堆合并时,当我们合并时只能暴力把一个堆里的元素一个一个插入另一个堆里,这样复杂度将达到\(\log ...
- POJ1845
这还是一道综合了许多数论的知识点的,做完也涨了不少姿势 但还是因为约数和公式这个鬼东西去找了度娘 题意很简单,就是求\(A^B\)的约数之和\(mod\ 9901\). 但是这种题意越是简单的题目越是 ...
- BJOI2018简要题解
BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生 ...
- 【php增删改查实例】第十八节 - login.php编写
1.对用户名和密码进行非空判断(后台验证) $username; $password; if(isset($_POST['username']) && $_POST['username ...
- GlusterFS分布式存储数据的恢复机制(AFR)的说明
GlusterFSFS恢复数据都是基于副本卷来说的,GlusterFSFS复制卷是采用镜像的方式做的,并且是同步事务性操作.简单来说就是,某一个客户要写文件时,先把这个文件锁住,然后同时写两个或多个副 ...
- linux下文件加密方法总结
为了安全考虑,通常会对一些重要文件进行加密备份或加密保存,下面对linux下的文件加密方法做一简单总结: 方法一:gzexe加密这种加密方式不是非常保险的方法,但是能够满足一般的加密用途,可以隐蔽脚本 ...
- windows如何查看电脑开关机记录
如何查看电脑开关机记录 (一)如果你只是想查看一下,从昨天关机到今天开机之间有没有人使用我的计算机,在“开始”菜单的运行”中输入“eventvwr.msc”,或者是按下"开始菜单" ...