题目链接

\(Description\)

给定\(n\),求\(1\sim n\)中的素数个数。

\(2\leq n\leq10^{11}\)。

\(Solution\)

Min_25筛。只需要求出\(g(n,|P|)\)。

跑的好慢啊QAQ

//5283ms	11.62M
#include <cmath>
#include <cstdio>
#include <algorithm>
typedef long long LL;
const int N=317000<<1; int cnt,P[N>>2],id1[N],id2[N];
LL g[N],w[N];
bool notP[N]; void Init(int n)
{
notP[1]=1;
for(int i=2; i<=n; ++i)
{
if(!notP[i]) P[++cnt]=i;
for(int j=1; j<=cnt&&i*P[j]<=n; ++j)
if(notP[i*P[j]]=1,!(i%P[j])) break;
}
} int main()
{
LL n; scanf("%lld",&n);
int m=0,Sqr=sqrt(n+0.5); Init(Sqr);
for(LL i=1,j; i<=n; i=j+1)
{
w[++m]=n/i, j=n/w[m];
if(w[m]<=Sqr) id1[w[m]]=m;
else id2[j]=m;
g[m]=w[m]-1;
}
w[m+1]=-1;
for(int j=1; j<=cnt; ++j)
{
int pj=P[j]; LL lim=1ll*pj*pj;
for(int i=1; lim<=w[i]; ++i)
{
int k=w[i]/pj<=Sqr?id1[w[i]/pj]:id2[n/(w[i]/pj)];
g[i]-=g[k]-j+1;
}
}
printf("%lld\n",g[1]); return 0;
}

还有种很神的写法

#include<cstdio>
#include<math.h> #define ll long long const int N = 316300;
ll n, g[N<<1], a[N<<1];
int id, cnt, sn, prime[N];
inline int Id(ll x){ return x<=sn?x:id-n/x+1;}
int main() {
scanf("%lld", &n), sn=sqrt(n);
for(ll i=1; i<=n; i=a[id]+1) a[++id]=n/(n/i), g[id]=a[id]-1;
for(int i=2; i<=sn; ++i) if(g[i]!=g[i-1]){
// 这里 i 必然是质数,因为 g[] 是前缀质数个数
// 当 <i 的质数的倍数都被筛去,让 g[] 发生改变的位置只能是下一个质数
// 别忘了 i<=sn 时,ID(i) 就是 i。
prime[++cnt]=i;
ll sq=(ll)i*i;
for(int j=id; a[j]>=sq; --j) g[j]-=g[Id(a[j]/i)]-(cnt-1);
}
return printf("%lld\n", g[id]), 0;
}

LOJ.6235.区间素数个数(Min_25筛)的更多相关文章

  1. loj#6235. 区间素数个数(min25筛)

    题意 题目链接 Sol min25筛的板子题,直接筛出\(g(N, \infty)\)即可 筛的时候有很多trick,比如只存\(\frac{N}{x}\)的值,第二维可以滚动数组滚动掉 #inclu ...

  2. loj #6235. 区间素数个数

    #6235. 区间素数个数 题目描述 求 1∼n 1\sim n1∼n 之间素数个数. 输入格式 一行一个数 n nn . 输出格式 一行一个数,表示答案. 样例 样例输入 10 样例输出 4 样例解 ...

  3. loj #6235. 区间素数个数 min_12.5筛

    \(\color{#0066ff}{ 题目描述 }\) 求 \(1\sim n\) 之间素数个数. \(\color{#0066ff}{输入格式}\) 一行一个数 n . \(\color{#0066 ...

  4. LOJ6235 区间素数个数(min_25筛)

    题目链接:LOJ 题目大意:看到题目名字应该都知道是啥了吧. $1\le N\le 10^{11}$. 阉割版 min_25 筛.发现答案实际上就是 min_25 筛中 $g(N,pl)$ 的值.(取 ...

  5. LightOj 1197 - Help Hanzo(分段筛选法 求区间素数个数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1197 题意:给你两个数 a b,求区间 [a, b]内素数的个数, a and b ( ...

  6. LOJ #6202. 叶氏筛法(min_25 筛)

    题意 求 \([L, R]\) 之间的素数之和 . \(L≤10^{10},2×10^{10} \le R \le 10^{11}\) 题解 一个有点裸的 min_25筛 ? 现在我只会筛素数的前缀和 ...

  7. LOJ 6053 简单的函数——min_25筛

    题目:https://loj.ac/problem/6053 min_25筛:https://www.cnblogs.com/cjyyb/p/9185093.html 这里把计算 s( n , j ) ...

  8. LOJ.6053.简单的函数(Min_25筛)

    题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/91 ...

  9. loj 6053 简单的函数 —— min_25筛

    题目:https://loj.ac/problem/6053 参考博客:http://www.cnblogs.com/zhoushuyu/p/9187319.html 算 id 也可以不存下来,因为 ...

随机推荐

  1. jquery----jquery中的属性的利用

    1.javascript addClass 利用document.getElementById("XX")找到document对象.然后再通过addClass("xxx& ...

  2. h5 video标签的使用

     标签的布置 <video src="1.mp4" poster="1.jpg" id="vid" controls> 你的浏览 ...

  3. 第一周学习总结-Java

    2018年7月15日 暑假第一周,我从网上找了一些讲Java的视频,学到了一些Java的基础,同时也弥补了一些之前学c/c++的知识漏洞.例如,了解到了原码反码补码和按位取反运算符(~)的运算原理. ...

  4. C++ Primer 笔记——枚举类型

    1.和类一样,每个枚举类型定义了一种新的类型.枚举属于字面值常量类型. 2.C++包含两种枚举:限定作用域的和不限定作用域的.C++11新标准引入了限定作用域的枚举类型. }; // 限定作用域的枚举 ...

  5. Docker相关释义

    Docker相关释义 基础网站:http://www.runoob.com/docker/docker-tutorial.html Docker的思想来自于集装箱,集装箱解决了什么问题?在一艘大船上, ...

  6. Duplicate 复制数据库 搭建Dataguard

    1 操作系统环境 此处隐藏具体信息 System IP-address db_name db_version Comment         Target DB         Auxiliary D ...

  7. 数据结构c++实现代码-链表

    /*节点Node的相关声明与定义*/ //Node.h #include<iostream> using namespace std; template<typename T> ...

  8. last与lastb命令 读取的日志文件

    在linux系统中,last与lastb命令用来列出目前与过去登录系统的用户相关信息.指令英文原义: last, lastb - show listing of last logged in user ...

  9. RHEL7恢复root密码

    RHEL7恢复root密码 首先关闭SELINUX [root@panda ~]# getenforce Disabled 然后重启,按↑↓键,进入如下界面,选择第一项,按下e键进行编辑 在此界面找到 ...

  10. Reactnative——安装React Navigation后无法运行项目

    运行 npm install --save react-navigation 后,运行 react-native run-android 报 解决方法: 1.react-native init Nav ...