https://github.com/tensorflow/tensorflow/issues/3212

NaNs usually indicate something wrong with your training. Perhaps your learning rate is too high, perhaps you have invalid data. Maybe you have an invalid operation like a divide by zero. Tensorflow refusing to write any NaNs is giving you a warning that something has gone wrong with your training.

If you  still suspect there is an underlying bug, you need to provide us a reproducible test case (as small as possible), plus information about what environment (please see the issue submission template).

https://stackoverflow.com/questions/33712178/tensorflow-nan-bug?newreg=c7e31a867765444280ba3ca50b657a07

Actually, it turned out to be something stupid. I'm posting this in case anyone else would run into a similar error.

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))

is actually a horrible way of computing the cross-entropy. In some samples, certain classes could be excluded with certainty after a while, resulting in y_conv=0 for that sample. That's normally not a problem since you're not interested in those, but in the way cross_entropy is written there, it yields 0*log(0) for that particular sample/class. Hence the NaN.

Replacing it with

cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv,1e-10,1.0)))

https://stackoverflow.com/questions/33922937/why-does-tensorflow-return-nan-nan-instead-of-probabilities-from-a-csv-file

Try throwing in a few of these.  Instead of this line:

tf_softmax = tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias)

Try:

tf_bias = tf.Print(tf_bias, [tf_bias], "Bias: ")
tf_weight = tf.Print(tf_weight, [tf_weight], "Weight: ")
tf_in = tf.Print(tf_in, [tf_in], "TF_in: ")
matmul_result = tf.matmul(tf_in, tf_weight)
matmul_result = tf.Print(matmul_result, [matmul_result], "Matmul: ")
tf_softmax = tf.nn.softmax(matmul_result + tf_bias)

to see what Tensorflow thinks the intermediate values are.  If the NaNs are showing up earlier in the pipeline, it should give you a better idea of where the problem lies.  Good luck!  If you get some data out of this, feel free to follow up and we'll see if we can get you further.

Updated to add:  Here's a stripped-down debugging version to try, where I got rid of the input functions and just generated some random data:

https://stackoverflow.com/questions/38810424/how-does-one-debug-nan-values-in-tensorflow

There are a couple of reasons WHY you can get a NaN-result, often it is because of too high a learning rate but plenty other reasons are possible like for example corrupt data in your input-queue or a log of 0 calculation.

Anyhow, debugging with a print as you describe cannot be done by a simple print (as this would result only in the printing of the tensor-information inside the graph and not print any actual values).

However, if you use tf.print as an op in bulding the graph (tf.print) then when the graph gets executed you will get the actual values printed (and it IS a good exercise to watch these values to debug and understand the behavior of your net).

However, you are using the print-statement not entirely in the correct manner. This is an op, so you need to pass it a tensor and request a result-tensor that you need to work with later on in the executing graph. Otherwise the op is not going to be executed and no printing occurs. Try this:

Z = tf.sqrt(Delta_tilde)
Z = tf.Print(Z,[Z], message="my Z-values:") # <-------- TF PRINT STATMENT
Z = Transform(Z) # potentially some transform, currently I have it to return Z for debugging (the identity)
Z = tf.pow(Z, 2.0)

tensorflow nan的更多相关文章

  1. 常用深度学习框——Caffe/ TensorFlow / Keras/ PyTorch/MXNet

    常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括Tenso ...

  2. 解决tensorflow在训练的时候权重是nan问题

    搭建普通的卷积CNN网络. nan表示的是无穷或者是非数值,比如说你在tensorflow中使用一个数除以0,那么得到的结果就是nan. 在一个matrix中,如果其中的值都为nan很有可能是因为采用 ...

  3. TensorFlow | ReluGrad input is not finite. Tensor had NaN values

    问题的出现 Question 这个问题是我基于TensorFlow使用CNN训练MNIST数据集的时候遇到的.关键的相关代码是以下这部分: cross_entropy = -tf.reduce_sum ...

  4. tensorflow训练中出现nan

    问题暂记: 之后看 https://blog.csdn.net/qq_23142123/article/details/80526931 https://www.zhihu.com/question/ ...

  5. tensorflow 训练网络loss突然出现nan的情况

    1.问题描述:开始训练一切都是那么的平静,很正常! 突然loss变为nan,瞬间懵逼! 2.在网上看了一些解答,可能是梯度爆炸,可能是有关于0的计算.然后我觉得可能是关于0的吧,然后进行了验证. 3. ...

  6. tensorflow 训练的时候loss=nan

    出现loss为nan 可能是使用了relu激活函数,导致的.因为在负半轴上输出都是0

  7. 深度学习中损失值(loss值)为nan(以tensorflow为例)

    我做的是一个识别验证码的深度学习模型,识别的图片如下 验证码图片识别4个数字,数字间是有顺序的,设立标签时设计了四个onehot向量链接起来,成了一个长度为40的向量,然后模型的输入也是40维向量用s ...

  8. tensorflow学习

    tensorflow安装时遇到gcc: error trying to exec 'as': execvp: No such file or directory. 截止到2016年11月13号,源码编 ...

  9. Tensorflow 实现稠密输入数据的逻辑回归二分类

    首先 实现一个尽可能少调用tf.nn模块儿的,自己手写相关的function     import tensorflow as tf import numpy as np import melt_da ...

随机推荐

  1. 配置gitlab自动备份

    在gitlab机器的root用户执行 首先,假设有2台机器. gitlab 1.1.1.1 backup 2.2.2.2 做秘钥信任 gitlab root 生成 ssh-key copy密钥到bac ...

  2. Spring系列博客汇总

    https://www.cnblogs.com/leeSmall/category/1093236.html   springmvc https://www.cnblogs.com/leeSmall/ ...

  3. VIVADO 入门之仿真与逻辑分析仪使用

    多路分频器设计 在第七节的学习中,笔者带大家通过一个入门必学的流水灯实验实现,快速掌握了VIVADO基于FPGA开发板的基本流程.考虑到很多初学者并没有掌握好Vivado 下FPGA的开发流程,本章开 ...

  4. shell循环(两个日期比较,改变某个特定日期来改变当前比较值)

    需求:从当前时间前6个月开始执行某个语句,直到执行到当前日期的前一天.  shell脚本如下: #!/bin/bash yesterday=`date -d -1day +%Y%m%d` sixmon ...

  5. 6.HTML+CSS制作一双眼睛

    效果地址:https://codepen.io/flyingliao/pen/oOLodJ?editors=1100 其它动画效果地址:1.https://scrimba.com/c/cJ8NPpU2 ...

  6. CUDA compiler driver nvcc 散点 part 1

    ▶ 参考[https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html] ▶ nvcc 预定义的宏 __NVCC__ // 编译 ...

  7. mac 安装软件

    一.安装spark 1.官网下载最新tar文件 2.解压 3.安装java开发环境 3.1.安装下载java 8  https://www.oracle.com/technetwork/java/ja ...

  8. leetcode114

    class Solution { public: void flatten(TreeNode* root) { while(root){ if(root->left){ TreeNode* pr ...

  9. 2017-11-04 Sa OCT codecombat

    def hasEnemy(): e = hero.findNearestEnemy() if e: return True else: return False def enemyTooClose() ...

  10. 【原】The Linux Command Line - Processes

    ps - report a snapshot of current processes top - display tasks job - list active jobs bg - place a ...