tensorflow nan
https://github.com/tensorflow/tensorflow/issues/3212
NaNs usually indicate something wrong with your training. Perhaps your learning rate is too high, perhaps you have invalid data. Maybe you have an invalid operation like a divide by zero. Tensorflow refusing to write any NaNs is giving you a warning that something has gone wrong with your training.
If you still suspect there is an underlying bug, you need to provide us a reproducible test case (as small as possible), plus information about what environment (please see the issue submission template).
Actually, it turned out to be something stupid. I'm posting this in case anyone else would run into a similar error.
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
is actually a horrible way of computing the cross-entropy. In some samples, certain classes could be excluded with certainty after a while, resulting in y_conv=0 for that sample. That's normally not a problem since you're not interested in those, but in the way cross_entropy is written there, it yields 0*log(0) for that particular sample/class. Hence the NaN.
Replacing it with
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv,1e-10,1.0)))
Try throwing in a few of these. Instead of this line:
tf_softmax = tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias)
Try:
tf_bias = tf.Print(tf_bias, [tf_bias], "Bias: ")
tf_weight = tf.Print(tf_weight, [tf_weight], "Weight: ")
tf_in = tf.Print(tf_in, [tf_in], "TF_in: ")
matmul_result = tf.matmul(tf_in, tf_weight)
matmul_result = tf.Print(matmul_result, [matmul_result], "Matmul: ")
tf_softmax = tf.nn.softmax(matmul_result + tf_bias)
to see what Tensorflow thinks the intermediate values are. If the NaNs are showing up earlier in the pipeline, it should give you a better idea of where the problem lies. Good luck! If you get some data out of this, feel free to follow up and we'll see if we can get you further.
Updated to add: Here's a stripped-down debugging version to try, where I got rid of the input functions and just generated some random data:
https://stackoverflow.com/questions/38810424/how-does-one-debug-nan-values-in-tensorflow
There are a couple of reasons WHY you can get a NaN-result, often it is because of too high a learning rate but plenty other reasons are possible like for example corrupt data in your input-queue or a log of 0 calculation.
Anyhow, debugging with a print as you describe cannot be done by a simple print (as this would result only in the printing of the tensor-information inside the graph and not print any actual values).
However, if you use tf.print as an op in bulding the graph (tf.print) then when the graph gets executed you will get the actual values printed (and it IS a good exercise to watch these values to debug and understand the behavior of your net).
However, you are using the print-statement not entirely in the correct manner. This is an op, so you need to pass it a tensor and request a result-tensor that you need to work with later on in the executing graph. Otherwise the op is not going to be executed and no printing occurs. Try this:
Z = tf.sqrt(Delta_tilde)
Z = tf.Print(Z,[Z], message="my Z-values:") # <-------- TF PRINT STATMENT
Z = Transform(Z) # potentially some transform, currently I have it to return Z for debugging (the identity)
Z = tf.pow(Z, 2.0)
tensorflow nan的更多相关文章
- 常用深度学习框——Caffe/ TensorFlow / Keras/ PyTorch/MXNet
常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括Tenso ...
- 解决tensorflow在训练的时候权重是nan问题
搭建普通的卷积CNN网络. nan表示的是无穷或者是非数值,比如说你在tensorflow中使用一个数除以0,那么得到的结果就是nan. 在一个matrix中,如果其中的值都为nan很有可能是因为采用 ...
- TensorFlow | ReluGrad input is not finite. Tensor had NaN values
问题的出现 Question 这个问题是我基于TensorFlow使用CNN训练MNIST数据集的时候遇到的.关键的相关代码是以下这部分: cross_entropy = -tf.reduce_sum ...
- tensorflow训练中出现nan
问题暂记: 之后看 https://blog.csdn.net/qq_23142123/article/details/80526931 https://www.zhihu.com/question/ ...
- tensorflow 训练网络loss突然出现nan的情况
1.问题描述:开始训练一切都是那么的平静,很正常! 突然loss变为nan,瞬间懵逼! 2.在网上看了一些解答,可能是梯度爆炸,可能是有关于0的计算.然后我觉得可能是关于0的吧,然后进行了验证. 3. ...
- tensorflow 训练的时候loss=nan
出现loss为nan 可能是使用了relu激活函数,导致的.因为在负半轴上输出都是0
- 深度学习中损失值(loss值)为nan(以tensorflow为例)
我做的是一个识别验证码的深度学习模型,识别的图片如下 验证码图片识别4个数字,数字间是有顺序的,设立标签时设计了四个onehot向量链接起来,成了一个长度为40的向量,然后模型的输入也是40维向量用s ...
- tensorflow学习
tensorflow安装时遇到gcc: error trying to exec 'as': execvp: No such file or directory. 截止到2016年11月13号,源码编 ...
- Tensorflow 实现稠密输入数据的逻辑回归二分类
首先 实现一个尽可能少调用tf.nn模块儿的,自己手写相关的function import tensorflow as tf import numpy as np import melt_da ...
随机推荐
- ArrayList add方法(转)
由于 BrowerList 输出结果都是最后一条记录,后来网上查到了 if (dRead.HasRows) { List<Class_RejectQuery> BrowerList = n ...
- OpenStack Q版本新功能以及各核心组件功能对比
OpenStack Q版本已经发布了一段时间了.今天, 小编来总结一下OpenStack Q版本核心组件的各项主要新功能, 再来汇总一下最近2年来OpenStack N.O.P.Q各版本核心组件的主要 ...
- leetcode14:最长公共字符串
编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...
- uva-10602-贪心
题意:有个编辑器,支持三种操作,摁下一个键盘上的字符,重复最后一个单词,删除最后一个字符.给N个字符串,必须先在编辑器内输入第一个字符, 问,输入完所有字符串最少需要摁下多少次键盘. 最多100个字符 ...
- Source Code Pro 编程字体
Source Code Pro :是 Adobe 公司号称最佳的编程字体,而且还是开源的 它非常适合用于阅读代码,支持 Linux.Mac OS X 和 Windows 等操作系统,而且无论商业或个人 ...
- js 生成手机图片并保存到相册
1.注意权限问题 2.调用HTML5+api 3.优化显示 4.注意兼容ios.Android
- mybatis sql参考
参考mybatis sql: <select id="xxx" resultType="com.xxxx.xxx.vo.xx.xx" parameterT ...
- TensorFlow学习之四
Tensorflow一些常用基本概念与函数(1) 摘要:本文主要对tf的一些常用概念与方法进行描述. 1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开 ...
- 自动滚动标签marquee
<marquee>标签,它是成对出现的标签,首标签<marquee>和尾标签</marquee>之间的内容就是滚动内容.<marquee>标签的属性主要 ...
- 23.Hibernate-基础.md
目录 1. ORM和Hibernare 2. 基本开发 2.1 lib 2.2 写对象和引入对象映射 2.2.1 写对象类文件 2.3 配置文件 2.3.1 配置加载映射文件 2.3.2 配置数据库连 ...