tensorflow nan
https://github.com/tensorflow/tensorflow/issues/3212
NaNs usually indicate something wrong with your training. Perhaps your learning rate is too high, perhaps you have invalid data. Maybe you have an invalid operation like a divide by zero. Tensorflow refusing to write any NaNs is giving you a warning that something has gone wrong with your training.
If you still suspect there is an underlying bug, you need to provide us a reproducible test case (as small as possible), plus information about what environment (please see the issue submission template).
Actually, it turned out to be something stupid. I'm posting this in case anyone else would run into a similar error.
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
is actually a horrible way of computing the cross-entropy. In some samples, certain classes could be excluded with certainty after a while, resulting in y_conv=0 for that sample. That's normally not a problem since you're not interested in those, but in the way cross_entropy is written there, it yields 0*log(0) for that particular sample/class. Hence the NaN.
Replacing it with
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv,1e-10,1.0)))
Try throwing in a few of these. Instead of this line:
tf_softmax = tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias)
Try:
tf_bias = tf.Print(tf_bias, [tf_bias], "Bias: ")
tf_weight = tf.Print(tf_weight, [tf_weight], "Weight: ")
tf_in = tf.Print(tf_in, [tf_in], "TF_in: ")
matmul_result = tf.matmul(tf_in, tf_weight)
matmul_result = tf.Print(matmul_result, [matmul_result], "Matmul: ")
tf_softmax = tf.nn.softmax(matmul_result + tf_bias)
to see what Tensorflow thinks the intermediate values are. If the NaNs are showing up earlier in the pipeline, it should give you a better idea of where the problem lies. Good luck! If you get some data out of this, feel free to follow up and we'll see if we can get you further.
Updated to add: Here's a stripped-down debugging version to try, where I got rid of the input functions and just generated some random data:
https://stackoverflow.com/questions/38810424/how-does-one-debug-nan-values-in-tensorflow
There are a couple of reasons WHY you can get a NaN-result, often it is because of too high a learning rate but plenty other reasons are possible like for example corrupt data in your input-queue or a log of 0 calculation.
Anyhow, debugging with a print as you describe cannot be done by a simple print (as this would result only in the printing of the tensor-information inside the graph and not print any actual values).
However, if you use tf.print as an op in bulding the graph (tf.print) then when the graph gets executed you will get the actual values printed (and it IS a good exercise to watch these values to debug and understand the behavior of your net).
However, you are using the print-statement not entirely in the correct manner. This is an op, so you need to pass it a tensor and request a result-tensor that you need to work with later on in the executing graph. Otherwise the op is not going to be executed and no printing occurs. Try this:
Z = tf.sqrt(Delta_tilde)
Z = tf.Print(Z,[Z], message="my Z-values:") # <-------- TF PRINT STATMENT
Z = Transform(Z) # potentially some transform, currently I have it to return Z for debugging (the identity)
Z = tf.pow(Z, 2.0)
tensorflow nan的更多相关文章
- 常用深度学习框——Caffe/ TensorFlow / Keras/ PyTorch/MXNet
常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括Tenso ...
- 解决tensorflow在训练的时候权重是nan问题
搭建普通的卷积CNN网络. nan表示的是无穷或者是非数值,比如说你在tensorflow中使用一个数除以0,那么得到的结果就是nan. 在一个matrix中,如果其中的值都为nan很有可能是因为采用 ...
- TensorFlow | ReluGrad input is not finite. Tensor had NaN values
问题的出现 Question 这个问题是我基于TensorFlow使用CNN训练MNIST数据集的时候遇到的.关键的相关代码是以下这部分: cross_entropy = -tf.reduce_sum ...
- tensorflow训练中出现nan
问题暂记: 之后看 https://blog.csdn.net/qq_23142123/article/details/80526931 https://www.zhihu.com/question/ ...
- tensorflow 训练网络loss突然出现nan的情况
1.问题描述:开始训练一切都是那么的平静,很正常! 突然loss变为nan,瞬间懵逼! 2.在网上看了一些解答,可能是梯度爆炸,可能是有关于0的计算.然后我觉得可能是关于0的吧,然后进行了验证. 3. ...
- tensorflow 训练的时候loss=nan
出现loss为nan 可能是使用了relu激活函数,导致的.因为在负半轴上输出都是0
- 深度学习中损失值(loss值)为nan(以tensorflow为例)
我做的是一个识别验证码的深度学习模型,识别的图片如下 验证码图片识别4个数字,数字间是有顺序的,设立标签时设计了四个onehot向量链接起来,成了一个长度为40的向量,然后模型的输入也是40维向量用s ...
- tensorflow学习
tensorflow安装时遇到gcc: error trying to exec 'as': execvp: No such file or directory. 截止到2016年11月13号,源码编 ...
- Tensorflow 实现稠密输入数据的逻辑回归二分类
首先 实现一个尽可能少调用tf.nn模块儿的,自己手写相关的function import tensorflow as tf import numpy as np import melt_da ...
随机推荐
- 【ELK】之Centos6.9_x64安装elasticsearch6.2.1
1.下载elasticsearch6.2.1 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.2.1 ...
- 受限玻尔兹曼机(Restricted Boltzmann Machine, RBM) 简介
受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是由Hinton和Sejnowski于1986年提出的一种生成式随机神经网络(generative stochas ...
- 安卓打开远程调试(免root)
首先用数据线连接adb,在pc端执行: adb tcpip 5555 然后就能拔掉数据线了. pc执行这个: adb connect 172.19.208.2 就能连接上
- mysql相关碎碎念
取得当天: SELECT curdate(); mysql> SELECT curdate();+------------+| curdate() |+------------+| 2013- ...
- JVM内存区域详解(Eden Space、Survivor Space、Old Gen、Code Cache和Perm Gen)
JVM区域总体分两类,heap区和非heap区.heap区又分为: Eden Space(伊甸园). Survivor Space(幸存者区). Old Gen(老年代). 非heap区又分: Cod ...
- Hive 任务优化 tips
1. 集群任务队列: 一般有 root.default, root.online, root.offline, root.spark-thiftserver Hue提交的任务一般默认在 defau ...
- python3 互译无线短信接口
#!/usr/local/bin/python#-*- coding:utf-8 -*-import http.clientimport urllibimport random host = &quo ...
- setDaemon 守护线程
setDaemon(True): 将线程声明为守护线程,必须在start() 方法调用之前设置, 如果不设置为守护线程程序会被无限挂起.这个方法基本和join是相反的. 当我们 在程序运行中,执行一个 ...
- Java 就业班 Web框架
- subString(index,end) 用法
sb = sb.Substring(0, sb.Length - 1); 获取当前字符串的前一部分去掉最后一个字符