多目标遗传算法 ------ NSGA-II (部分源码解析)二元锦标赛选择 tourselect.c
tourselect.c 文件中共有两个函数:
selection (population *old_pop, population *new_pop)
individual* tournament (individual *ind1, individual *ind2)
首先,第一个函数代码如下:
/* Routine for tournament selection, it creates a new_pop from old_pop by performing tournament selection and the crossover */
void selection (population *old_pop, population *new_pop)
{
int *a1, *a2;
int temp;
int i;
int rand;
individual *parent1, *parent2;
a1 = (int *)malloc(popsize*sizeof(int));
a2 = (int *)malloc(popsize*sizeof(int));
for (i=; i<popsize; i++)
{
a1[i] = a2[i] = i;
}
for (i=; i<popsize; i++)
{
rand = rnd (i, popsize-);
temp = a1[rand];
a1[rand] = a1[i];
a1[i] = temp;
rand = rnd (i, popsize-);
temp = a2[rand];
a2[rand] = a2[i];
a2[i] = temp;
}
for (i=; i<popsize; i+=)
{
parent1 = tournament (&old_pop->ind[a1[i]], &old_pop->ind[a1[i+]]);
parent2 = tournament (&old_pop->ind[a1[i+]], &old_pop->ind[a1[i+]]);
crossover (parent1, parent2, &new_pop->ind[i], &new_pop->ind[i+]);
parent1 = tournament (&old_pop->ind[a2[i]], &old_pop->ind[a2[i+]]);
parent2 = tournament (&old_pop->ind[a2[i+]], &old_pop->ind[a2[i+]]);
crossover (parent1, parent2, &new_pop->ind[i+], &new_pop->ind[i+]);
}
free (a1);
free (a2);
return;
}
其中,
a1 = (int *)malloc(popsize*sizeof(int));
a2 = (int *)malloc(popsize*sizeof(int));
分别生成两个 种群个体大小的数组 a1 a2,这两个数组里面以后会分别保存乱序的种群个体序号。
for (i=; i<popsize; i++)
{
a1[i] = a2[i] = i;
}
对两个数组进行初始话,顺序存放种群个体序号。
for (i=; i<popsize; i++)
{
rand = rnd (i, popsize-);
temp = a1[rand];
a1[rand] = a1[i];
a1[i] = temp;
rand = rnd (i, popsize-);
temp = a2[rand];
a2[rand] = a2[i];
a2[i] = temp;
}
对a1, a2 数组中存放的个体序号打乱,其中打乱的次数为 popsize ,该操作基本保证所有个体的序号基本不在其原有位置上。
(在高级面向对象语言中以上代码可以用一句库函数调用代替)
for (i=; i<popsize; i+=)
{
parent1 = tournament (&old_pop->ind[a1[i]], &old_pop->ind[a1[i+]]);
parent2 = tournament (&old_pop->ind[a1[i+]], &old_pop->ind[a1[i+]]);
crossover (parent1, parent2, &new_pop->ind[i], &new_pop->ind[i+]);
parent1 = tournament (&old_pop->ind[a2[i]], &old_pop->ind[a2[i+]]);
parent2 = tournament (&old_pop->ind[a2[i+]], &old_pop->ind[a2[i+]]);
crossover (parent1, parent2, &new_pop->ind[i+], &new_pop->ind[i+]);
}
这部分代码完成了遗传算法中的 选择操作 和 交叉操作。
其中 old_pop new_pop 都是相同种群个体大小的种群,其种群大小均为 popsize。
tournament 锦标赛法,这里面使用的是二元锦标赛选择法,循环体内共有4次 tournament 操作,该循环共执行 popsize/4 次,故共进行了 popsize 次二元锦标赛选择。由于每次选择出一个新个体,所以该方式选择出的新种群 new_pop 个体数 和 旧种群 old_pop 个体数一致。
同理,crossover 操作进行了 popsize/2 次 , (其中每次进行交叉操作的时候都是选择两个个体,每次判断选择的两个个体是否进行交叉都要根据给定的交叉概率进行判断),该循环体中crossover函数总共会对 popsize 个个体进行处理。
注意: crossover 操作 循环调用 popsize/2 次 而不是 popsize 次。
/* Routine for binary tournament */
individual* tournament (individual *ind1, individual *ind2)
{
int flag;
flag = check_dominance (ind1, ind2);
if (flag==)
{
return (ind1);
}
if (flag==-)
{
return (ind2);
}
if (ind1->crowd_dist > ind2->crowd_dist)
{
return(ind1);
}
if (ind2->crowd_dist > ind1->crowd_dist)
{
return(ind2);
}
if ((randomperc()) <= 0.5)
{
return(ind1);
}
else
{
return(ind2);
}
}
二元锦标赛竞赛法比较简单, 其中调用 check_dominance 函数判断两个个体的支配关系,如果互不支配则判断两个个体的拥挤距离,如果都相同这则随机选择一个个体。
多目标遗传算法 ------ NSGA-II (部分源码解析)二元锦标赛选择 tourselect.c的更多相关文章
- 多目标遗传算法 ------ NSGA-II (部分源码解析)介绍
NSGA(非支配排序遗传算法).NSGA-II(带精英策略的快速非支配排序遗传算法),都是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化. 在官网: http://www.ii ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 交叉操作 crossover.c
遗传算法中的交叉操作是 对NSGA-II 源码分析的 最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的 函数模块. 这里,首先提一下,遗传算法的 交叉操作.变异操作都 ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)目标函数 problemdef.c
/* Test problem definitions */ # include <stdio.h> # include <stdlib.h> # include <ma ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)状态报告 打印 report.c
/* Routines for storing population data into files */ # include <stdio.h> # include <stdlib ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 拥挤距离计算 crowddist.c
/* Crowding distance computation routines */ # include <stdio.h> # include <stdlib.h> # ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释
This is the Readme file for NSGA-II code. About the Algorithm--------------------------------------- ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 实数、二进制编码的变异操作 mutation.c
遗传算法的变异操作 /* Mutation routines */ # include <stdio.h> # include <stdlib.h> # include < ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)两个个体支配判断 dominance.c
/* Domination checking routines */ # include <stdio.h> # include <stdlib.h> # include &l ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 临时种群生成新父代种群 fillnds.c
/* Nond-domination based selection routines */ # include <stdio.h> # include <stdlib.h> ...
随机推荐
- html 空白汉字占位符 
在爬取京东评论时,复制html内容,发现文本中有些空格的宽度没见过.后来用htmlParser解析html页面时,发现这些空格都被替换为 . 12288是Unicode编码,&#表示宋体,&a ...
- 伪静态与重定向--RewriteRule
环境:windows 10,phpstudy,sublime text.服务器使用Apache,网站根目录为E:\phpstudy\www\,所以.htaccess放在www目录下. RewriteR ...
- Linux下运行Shell脚本或者可执行文件Executable方法
绝对路径 /xxx/xxx/something.sh /xxx/xxx/executable 相对路径 ./something.sh ./executable 注意:前边得加./,可不是像window ...
- activiti engine.schema.update DB_SCHEMA_UPDATE_FALSE
engine.properties # engine propertiesengine.schema.update=trueengine.activate.jobexecutor=falseengin ...
- eclipse html 打开方式
1. HTML Editor是有HTML语法着色的模式(类似于Notepad++里的效果),适用于大的HTML,这样复制剪贴效率较高,且有语法高亮. 2.Web Page Editor图形设计模式,类 ...
- [转帖]速度快散热好 为什么U.2 SSD还没普及?
速度快散热好 为什么U.2 SSD还没普及? 经典的影视剧中总有那么几位武林高手,江湖上只闻其名,不见其形.今天我们要聊的这位爷,誓要拳打南山M.2,脚踩北海SATA 3!它就是固态硬盘界久负盛名 ...
- ViewDragHelper
参考:Android 之 ViewDragHelper 详解 Android 之 ViewDragHelper详解(二) 看了几篇博客,并参考了上面的两篇博客,整理一下ViewDragHelper ...
- python使用原始套接字 解析原始ip头数据
使用底层套接字解码底层流量,是这次做的重点工作. 首先来捕获第一个包 # coding:utf-8import socket # 监听的主机IP host = "192.168.1.100& ...
- Bootstrap按钮式下拉菜单
前面的话 按钮式下拉菜单仅从外观上看,和下拉菜单效果基本上是一样的.不同的是普通的下拉菜单是block元素,而按钮式下拉菜单是inline-block元素.本文将详细介绍Bootstrap按钮式下拉菜 ...
- Harmonic Number (II) LightOJ - 1245 (找规律?。。。)
题意: 求前n项的n/i 的和 只取整数部分 暴力肯定超时...然后 ...现在的人真聪明...我真蠢 觉得还是别人的题意比较清晰 比如n=100的话,i=4时n/i等于25,i=5时n/i等于20 ...