题意:给你p和n,p代表每台计算器需要几个部分组成,n代表有几个组装机器,接下来n行,每行第一个数代表这台机器能够每小时组装几台,剩下前三个数字表示使用这台机器需要的前置条件(0代表当前组装不能有这个部分,1代表得有,2代表无所谓),剩下三个数字表示使用这台机器后的组装有那几个部分,问你最多能组装多少台

解题思路:首先最大流,建立一个超级源点,这个源点和所有前三个数字没有1的机器相连,建立一个超级汇点与所有后三个数字全为1的机器相连,中间所有的机器拆成两个点,边权为这个机器每小时的组装量,拆点的意义就是因为流过这个点的流量有限制

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=5050;
struct sc
{
int x,y,w;
}fna[maxn];
struct node
{
int val;
int x[15];
int y[15];
}a[100];
struct Edge
{
int fa;
int next;
int to;
int v;
int w;
}edge[maxn];
int head[maxn],cnt;
int pre[maxn],visit[maxn];
int n,p,cot;
int Start,End;
void add(int u,int v,int w)
{
edge[cnt].next=head[u];edge[cnt].to=v;edge[cnt].fa=u;edge[cnt].w=w;head[u]=cnt++;
edge[cnt].next=head[v];edge[cnt].to=u;edge[cnt].fa=v;edge[cnt].w=0;head[v]=cnt++;
}
int bfs(int s,int e)
{
queue<int>q;
memset(visit,0,sizeof(visit));memset(pre,-1,sizeof(pre));
q.push(s);visit[s]=1;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].w<=0||visit[v])
continue;
pre[v]=i;visit[v]=1;
if(v==e)
return 1;
q.push(v);
}
}
return 0;
}
int EK()
{
int ans=0;
int sub;
while(bfs(Start,End))
{
sub=inf;
int k=pre[End];
while(k!=-1)
{
sub=min(sub,edge[k].w);
k=pre[edge[k].fa];
}
k=pre[End];
while(k!=-1)
{
edge[k].w-=sub;
edge[k^1].w+=sub;
k=pre[edge[k].fa];
}
ans+=sub;
}
return ans;
}
int main()
{
int vis[150][150];
int flag;
memset(head,-1,sizeof(head));cnt=0;
memset(vis,0,sizeof(vis));
scanf("%d%d",&p,&n);
Start=0;End=2*n+1;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].val);
for(int j=1;j<=p;j++)
scanf("%d",&a[i].x[j]);
for(int j=1;j<=p;j++)
scanf("%d",&a[i].y[j]);
}
for(int i=1;i<=n;i++)
{
add(i,i+n,a[i].val);
flag=0;
for(int j=1;j<=p;j++)
if(a[i].x[j]==1)
flag=1;
if(flag==0)
add(Start,i,a[i].val);
flag=0;
for(int j=1;j<=p;j++)
if(a[i].y[j]!=1)
flag=1;
if(flag==0)
add(i+n,End,a[i].val);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
flag=0;
if(i==j)
continue;
for(int k=1;k<=p;k++)
{
if(a[j].x[k]==2)
continue;
if(a[j].x[k]!=a[i].y[k])
flag=1;
}
if(flag==0)
{
add(i+n,j,a[i].val);
vis[i+n][j]=1;
}
}
int ans=EK();
printf("%d ",ans);
for(int i=1;i<=n;i++)
for(int j=head[i+n];j!=-1;j=edge[j].next)
{
if(vis[i+n][edge[j].to]&&edge[j].w<a[i].val)
cot++;
}
printf("%d\n",cot);
for(int i=1;i<=n;i++)
for(int j=head[i+n];j!=-1;j=edge[j].next)
{
if(vis[i+n][edge[j].to]&&edge[j].w<a[i].val)
printf("%d %d %d\n",i,edge[j].to,a[i].val-edge[j].w);
}
}

  

poj3436(拆点最大流)的更多相关文章

  1. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  2. Control(拆点+最大流)

    Control http://acm.hdu.edu.cn/showproblem.php?pid=4289 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  3. BZOJ 1877 晨跑 拆点费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1877 题目大意: Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧 ...

  4. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  5. poj3436网络流之最大流拆点

    这题看了半天看不懂题意...还是看的网上题意写的 加一个源点一个汇点,把每个点拆成两个,这两个点的流量是v,其他联通的边都设为无穷大 输入没有1的点就与源点连接,输出只有1的点就与汇点连接 还有这个输 ...

  6. HDU 3572 Task Schedule(拆点+最大流dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  7. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  8. CF 277E Binary Tree on Plane (拆点 + 费用流) (KM也可做)

    题目大意: 平面上有n个点,两两不同.现在给出二叉树的定义,要求树边一定是从上指向下,即从y坐标大的点指向小的点,并且每个结点至多有两个儿子.现在让你求给出的这些点是否能构成一棵二叉树,如果能,使二叉 ...

  9. 【拆点费用流】【HDU1853】【 Cyclic Tour】

    题意: 有N个城市,M条单向路,Tom想环游全部城市,每次至少环游2个城市,每个城市只能被环游一次.由于每条单向路都有长度,要求游遍全部城市的最小长度. // 给定一个有向图,必须用若干个环来覆盖整个 ...

随机推荐

  1. 20, CSS 定义选择器

    1. ID 与类 2. 层叠 3. 分组 4. 继承 5. 上下文选择器 6. 子类选择器 7. 其他选择器 8. 结构与注释 20.1 ID 与类 选择器是用于控制页面设计的样式.即 ID 选择器何 ...

  2. apply,call和bind的用法区别

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. CSS像素、物理像素、逻辑像素、设备像素比、PPI、Viewport

    1.PX(CSS pixels) 1.1 定义 虚拟像素,可以理解为“直觉”像素,CSS和JS使用的抽象单位,浏览器内的一切长度都是以CSS像素为单位的,CSS像素的单位是px. 1.2 注意 在CS ...

  4. 【代码笔记】Web-CSS-CSS Text(文本)

    一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  5. #WEB安全基础 : HTML/CSS | 0x5a标签拓展和class、id属性的使用

    a标签不只是能链接到其他网页,也能链接到网页中的元素 class属性让你用CSS对特定的元素进行修饰 这些是一个网页设计者的有力武器 这节课还是一个index.html文件   以下是代码 <h ...

  6. SAP MM 实施项目里Open PO 迁移思路探讨

    SAP MM 实施项目里Open PO 迁移思路探讨 .序言.   SAP项目上线前夕,除了静态主数据需要导入以外,可能还有一些动态数据,比如open的采购订单,open的销售订单等单据也要迁移到SA ...

  7. 驰骋工作流引擎JFlow与activiti的对比之4种包含多实例的模式

    1. 无同步的多实例(MIwithout) 在流程中,一个活动可以激活多个实例,每个实例相互独立,并不需要在后面进行同步. 例子:比如用户购买了N本书,于是后续的支付账单.更新客户可以以本书为单位各自 ...

  8. Web项目发布后字体文件找不到

    一.问题 ①ASP.NET项目,开发工具Visual Studio ②在IIS上发布之后,网页控制台报错,某某文件找不到,但是在服务器文件夹中看明明有那个文件 二.解决方法 ①>>打开II ...

  9. android viewpage预加载和懒加载问题

    1.本人理解懒加载和预加载问题某种情况下可以归结为一类问题,下面我就说一下我遇到的预加载问题和懒加载问题及解决的相应方法: - [1 ] 预加载问题        描述:我用到了三个fragment. ...

  10. AES 加密与解密

    using System;using System.Collections.Generic;using System.IO;using System.Linq;using System.Securit ...