设 $H^{-1}$ 是 $H^1_0$ 的对偶空间, 定义域为 $[0,1]$. 试证:

(1) $\sed{h\sin (2\pi hx);\ h>0}$ 在 $H^{-1}$ 中有界;

(2) 试求 $h\sin (2\pi hx)$ 在 $H^{-1}$ 中的弱极限.

证明:

(1) 对 $\forall\ f\in H^1_0$, $\sen{f}_{H^1}\leq 1$, $$\beex \bea \sef{h\sin (2\pi hx),f(x)}&=\int_0^1 h\sin (2\pi hx)f(x)\rd x\\ &=-\frac{1}{2\pi} \int_0^1 f(x)\rd \cos(2\pi hx)\\ &=\frac{1}{2\pi} \int_0^1 f'(x)\cos (2\pi hx)\rd x. \eea \eeex$$ 故 $$\bex \sen{h\sin (2\pi hx)}_{H^{-1}}\leq \frac{1}{2\pi}. \eex$$

(2) 由 Riemann-Lebesgue 引理, $$\bex \sef{h\sin (2\pi hx),f(x)} =\frac{1}{2\pi} \int_0^1 f'(x)\cos (2\pi hx)\rd x\to 0\quad\sex{h\to\infty}. \eex$$ 故 $$\bex h\sin (2\pi hx)\rightharpoonup 0,\mbox{ in }H^{-1}. \eex$$

[再寄小读者之数学篇](2014-07-27 $H^{-1}$ 中的有界集与弱收敛极限)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. Python简单多进程demo

    ''' 多线程使用场景: 怎样用Python的多线程提高效率? io操作不占用CPU 计算操作占用CPU Python多线程不适合CPU操作密集型的任务,适合io操作密集型的任务 如果有CPU操作密集 ...

  2. python之函数对象、函数嵌套、名称空间与作用域、装饰器

    一 函数对象 一 函数是第一类对象,即函数可以当作数据传递 #1 可以被引用 #2 可以当作参数传递 #3 返回值可以是函数 #3 可以当作容器类型的元素 二 利用该特性,优雅的取代多分支的if de ...

  3. IDEA SpringBoot多模块项目搭建详细过程(转)

    文章转自https://blog.csdn.net/zcf980/article/details/83040029 项目源码: 链接: https://pan.baidu.com/s/1Gp9cY1Q ...

  4. 【转】详解springboot-修改内置tomcat版本

    1.解析Spring Boot父级依赖 <parent> <groupId>org.springframework.boot</groupId> <artif ...

  5. Golang 入门 : 字符串

    在 Golang 中,字符串是一种基本类型,这一点和 C 语言不同.C 语言没有原生的字符串类型,而是使用字符数组来表示字符串,并以字符指针来传递字符串.Golang 中的字符串是一个不可改变的 UT ...

  6. svn 钩子应用 - svn 提交字符限制, 不能为空

    一.版本库钩子 1.1 start-commit  开始提交的通知 输入参数:传递给你钩子程序的命令行参数,顺序如下: 1.  版本库路径 2.  认证过的尝试提交的用户名 3.  Depth,mer ...

  7. [第二届构建之法论坛] 预培训文档(Java版)

    本博客是第二届构建之法论坛暨软件工程培训活动预培训文档中[适用于结对编程部分的Java版本],需要实验者有一部分Java基础. 目录 Part0.背景 Part1.配置环境 配置JDK Linux 平 ...

  8. Insertion Sort 与 Merge Sort的性能比较(Java)

    public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextI ...

  9. Flask--路由, 配置, 蓝图

    一 . 双重装饰器重名的解决办法 # 我们都知道flask中的@app.route就是一层装饰器, 当我们需要在给视图函数加装饰器的时候就两层装饰器,这里介绍一下加装饰器的先后顺序,以及遇到的问题. ...

  10. Python——Socket编程

    一.TCP 1.客户端 import socket sk = socket.socket() # 买个手机 sk.connect(('127.0.0.1',8080)) # 拨号 ret = sk.r ...