设 $H^{-1}$ 是 $H^1_0$ 的对偶空间, 定义域为 $[0,1]$. 试证:

(1) $\sed{h\sin (2\pi hx);\ h>0}$ 在 $H^{-1}$ 中有界;

(2) 试求 $h\sin (2\pi hx)$ 在 $H^{-1}$ 中的弱极限.

证明:

(1) 对 $\forall\ f\in H^1_0$, $\sen{f}_{H^1}\leq 1$, $$\beex \bea \sef{h\sin (2\pi hx),f(x)}&=\int_0^1 h\sin (2\pi hx)f(x)\rd x\\ &=-\frac{1}{2\pi} \int_0^1 f(x)\rd \cos(2\pi hx)\\ &=\frac{1}{2\pi} \int_0^1 f'(x)\cos (2\pi hx)\rd x. \eea \eeex$$ 故 $$\bex \sen{h\sin (2\pi hx)}_{H^{-1}}\leq \frac{1}{2\pi}. \eex$$

(2) 由 Riemann-Lebesgue 引理, $$\bex \sef{h\sin (2\pi hx),f(x)} =\frac{1}{2\pi} \int_0^1 f'(x)\cos (2\pi hx)\rd x\to 0\quad\sex{h\to\infty}. \eex$$ 故 $$\bex h\sin (2\pi hx)\rightharpoonup 0,\mbox{ in }H^{-1}. \eex$$

[再寄小读者之数学篇](2014-07-27 $H^{-1}$ 中的有界集与弱收敛极限)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. Python简单多进程demo

    ''' 多线程使用场景: 怎样用Python的多线程提高效率? io操作不占用CPU 计算操作占用CPU Python多线程不适合CPU操作密集型的任务,适合io操作密集型的任务 如果有CPU操作密集 ...

  2. KafkaManager编译安装使用(支持kerberos认证)

    为了能够方便的查看及管理Kafka集群,yahoo提供了一个基于Web的管理工具(Kafka-Manager). 这个工具可以方便的查看集群中Kafka的Topic的状态(分区.副本及消息量等),支持 ...

  3. Spring事件和监听器

    Application下抽象子类ApplicationContextEvent的下面有4个已经实现好的事件 ContextClosedEvent(容器关闭时) ContextRefreshedEven ...

  4. iBATIS 传MAP处理方式(value是list的方式)

    1.前提条件 参数是map结构的数据 key:String 类型 value:list 集合 2.处理方式 遍历集合一般常规的方式使用iterate,这里也不例外了,如下 <iterate op ...

  5. Mango 基础知识

    1 mongdb和python交互的模块 pymongo 提供了mongdb和python交互的所有方法 安装方式: pip install pymongo 2 使用pymongo 1. 导入pymo ...

  6. @deprecated 的方法处理

    因为需要用到poi,偷懒不太想看官方文档,同时自己的github账号忘记密码了.所以直接在别人博客那拷贝一段代码来模仿修改创建HSSF的xsl文件. 虽然能运行,但发现代码太多横线,可以知道方法被标注 ...

  7. react混合开发APP,资源分享

    第一个: 链接:https://pan.baidu.com/s/1KdIs8EUcB9YTuK9VW1dC7g 密码:b68m 第二个: 链接:https://pan.baidu.com/s/1mi7 ...

  8. git revert用法以及与git reset的区别

    git revert用法 git revert 撤销 某次操作,此次操作之前和之后的commit和history都会保留,并且把这次撤销 作为一次最新的提交 * git revert HEAD     ...

  9. Java instanceof运算符

    java 中的instanceof 运算符是用来在运行时指出对象是否是特定类的一个实例.instanceof通过返回一个布尔值来指出,这个对象是否是这个特定类或者是它的子类的一个实例. 用法: res ...

  10. redis简介与持久化

    一 . redis简介 redis属于NoSQL学名(not only sql) 特点: 存储结构与mysql这一种关系型数据库完全不同,nosql存储的是key value形式 nosql有很多产品 ...