[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.3 广义 Newton 法则---本构方程
1. ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力.
2. 由于内摩擦力只与相对运动有关, 而 $\tau_{ij}$ 与速度无关, 而只与速度梯度有关, 且为线性的 (实验已很好的证实): $$\bex \tau_{ij}=c_{ijkl}\cfrac{\p u_k}{\p x_l}. \eex$$ 由于 $(\tau_{ij})$ 和 $\sex{\cfrac{\p u_k}{\p x_l}}$ 均为二阶张量, 而由张量识别定理, $(c_{ijkl})$ 为四阶张量. 又由 $p_{ij}$ 而 $\tau_{ij}$ 对称知 $$\bex c_{ijkl}=c_{jikl}. \eex$$
3. 设流体各向同性, 则 $c_{ijkl}$ 为各向同性张量, 有形式 $$\bex c_{ijkl}=\lm \delta_{ij}\delta_{kl} +\alpha \delta_{ik}\delta_{jl} +\beta\delta_{il}\delta_{jk}. \eex$$ 令 $\alpha=\mu+\nu$, $\beta=\mu-\nu$, 则由 $c_{ijkl}=c_{jikl}$ 知 $$\bex c_{ijkl}=\lm \delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}}. \eex$$ 由此, $c_{ijkl}=c_{ijlk}$, $$\bee\label{2_2_3_tau} \tau_{ij}=\lm \Div{\bf u}\delta_{ij}+2\mu s_{ij},\quad s_{ij}=\cfrac{1}{2}\sex{\cfrac{\p u_i}{\p x_j}+\cfrac{\p u_j}{\p x_i}}, \eee$$$$\bee\label{2_2_3_p} p_{ij}=(-p+\lm \Div{\bf u})\delta_{ij}+2\mu s_{ij}, \eee$$$$\bex {\bf P}=(-p+\lm \Div{\bf u}){\bf I}+2\mu {\bf S}. \eex$$
4. $\lm$, $\mu$ 的物理意义
(1) 考虑沿 $x_1$ 方向的剪切运动 $$\bex u_1=u_1(x_3),\quad u_2=u_3=0. \eex$$ 则由 \eqref{2_2_3_p}, $$\bex p_{13}=\mu \cfrac{\p u_1}{\p x_3}. \eex$$ 这就是 Newton 法则. 称 $\mu$ 为第一粘性系数 (动力学粘性系数).
(2) 由 \eqref{2_2_3_tau}, $$\bex \cfrac{1}{3}\sum_{i=1}^3 \tau_{ii} =\sex{\lm+\cfrac{2}{3}\mu }\Div{\bf u} =\sex{\lm+\cfrac{2}{3}\mu}\cfrac{1}{\tau}\cfrac{\rd \tau}{\rd t}\quad\sex{\tau=\cfrac{1}{\rho}:\mbox{ 比容}}. \eex$$ 记 $$\bex \mu'=\lm+\cfrac{2}{3}\mu, \eex$$ 则其为平均摩擦正应力与体积变化率之比, 描述流体运动过程中由膨胀或收缩引起的平均摩擦正应力的变换; 称为第二粘性系数 (膨胀粘性系数).
5. 总结:
(1) 应力张量---本构方程: $$\bex p_{ij}=-p\delta_{ij}+ 2\mu\sex{s_{ij}-\cfrac{1}{3}\Div{\bf u}\delta_{ij}} +\mu'\Div{\bf u} \delta_{ij}. \eex$$
(2) 广义Newton 法则: $$\bex \tau_{ij}=2\mu\sex{s_{ij}-\cfrac{1}{3}\Div{\bf u}\delta_{ij}} +\mu'\Div{\bf u} \delta_{ij}, \eex$$ 其中 $\mu>0$, $\mu'\geq 0$.
[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.3 广义 Newton 法则---本构方程的更多相关文章
- [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.6 一维粘性热传导流体动力学方程组
一维粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{ ...
- [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.5 粘性热传导流体动力学方程组的数学结构
1. 粘性热传导流体动力学方程组可化为 $$\beex \bea \cfrac{\p \rho}{\p t}&+({\bf u}\cdot\n)\rho=-\rho \Div{\bf u}, ...
- [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.4 粘性热传导流体动力学方程组
粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u ...
- [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.2 应力张量
1. 在有粘性的情形, 外界流体对 $\Omega$ 的作用力, 不仅有表面上的压力 (正压力), 也有表面上的内摩擦力 (切应力). 2. 于 $M$ 处以 ${\bf n}$ 为法向的单位面积 ...
- [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.1 引言
1. 实际的流体与理想流体的主要区别在于: 前者具有粘性 (内摩擦) 和热传导. 2. 内摩擦 (1) 当两层流体有相对运动时, 方有摩擦力; 它是一种内力; 单位面积上所受的内力称为应力; 而 ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1. 粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2. 理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3. 右端项具有间 ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1. 记号与假设 (1) 已燃气体的化学能为 $0$. (2) 单位质量的未燃气体的化学能为 $g_0>0$. 2. 对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1. 粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1. 记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2. 物理化学 (1) 燃烧过程中, 通过化学反应 ...
随机推荐
- Kerberos原理
前些日子为了搞清楚Kerberos原理,把MIT的Kerberos经典对话看了几遍,终于有了一个稍微清晰的认识,这里稍微记录下,因为Kerberos是使用传统加密技术实现的一个认证机制,所以顺便备忘下 ...
- JSP七大动作
- os模块使用
Python获取当前文件名的两种方法 1,使用python文件默认的‘ file ’属性 2,使用 sys.argv[0] print sys.argv # 输入参数列表print sys.argv[ ...
- Kaggle教程——大神教你上分
本文记录笔者在观看Coursera上国立经济大学HLE的课程 How to win a data science competetion中的收获,和大家分享.课程的这门课的讲授人是Kaggle的大牛, ...
- LightGBM大战XGBoost,谁将夺得桂冠?
引 言 如果你是一个机器学习社区的活跃成员,你一定知道 提升机器(Boosting Machine)以及它们的能力.提升机器从AdaBoost发展到目前最流行的XGBoost.XGBoost实际上已经 ...
- 早上一起来,就看到朋友圈发这个,慌的一 B
早上一起来,就看到朋友圈发这个,慌的一 B,也不知道是真是假- 图中的 c 表示已被确认,大家可以看到各个大厂真的是在大幅度裁员. 不知道明年的情况会如何,网上看到过一句话:2019 年也许是这 10 ...
- centos7下root密码丢失解决方案
1 root密码忘记 A.[rd.break方式更改root密码!] 1.重启 CentOS 7.X,在系统引导倒计时的时候快速按键盘上的[ ↑ ]或[ ↓ ]键,使其停留在GRUB菜单界面,并按照下 ...
- Sql JOIN 一张图说明
一图说明:
- 转:Flutter动画一
1. 动画介绍 动画对于App来说,非常的重要.很多App,正是因为有了动画,所以才会觉得炫酷.移动端的动画库有非常的多,例如iOS上的Pop.web端的animate.css.Android端的An ...
- coding规约的网站, 从sonar中链接过去
一个coding规约的网站, 从sonar中链接过去的. 挺好. https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding ...