题目描述

Problem Description:

  Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

  For example, given the following triangle

 [[2],

 [3,4],

 [6,5,7],

 [4,1,8,3]]

  The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

  Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

分析

    看过刘汝佳的《算法竞赛入门经典》的同学对这道题应该都不陌生,因为这是那本书讲动规里面举的第一个案例,可能也是很多人第一次接触动规时候的启蒙题目。

    对于这种问题维度较低,且无需寻径的求最优解问题,直接推出递推方程:\(M(i,j) = min(M(i+1,j),M(i+1,j+1)) + v(i,j)\),然后在题目给出的数据上实现递推方程的搜索过程即可。

    一般这种问题都有自底向上和自顶向下两种递推式,上述的递推式是自底向上的形式。另外一种懒得想了。

解决方案

//Solution
class Solution120 {
public int minimumTotal(List<List<Integer>> triangle) {
for(int i=triangle.size()-2; i>=0; i--) {
List<Integer> nc = triangle.get(i);
List<Integer> lc = triangle.get(i+1);
for(int j=0; j<nc.size(); j++) {
nc.set(j, nc.get(j)+(lc.get(j)<lc.get(j+1)?lc.get(j):lc.get(j+1)));
}
}
return triangle.get(0).get(0);
}
}

LeetCode120-Triangle-数组,动态规划的更多相关文章

  1. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  2. Triangle(动态规划)

    题目描述 Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjac ...

  3. HDU 4247 Pinball Game 3D(cdq 分治+树状数组+动态规划)

    Pinball Game 3D Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  5. Leetcode120.Triangle三角形最小路径和

    给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径和为 11 ...

  6. LeetCode120 Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  7. The Triangle (简单动态规划)

    7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calc ...

  8. POJ - 1163 The Triangle 【动态规划】

    一.题目 The Triangle 二.分析 动态规划入门题. 状态转移方程$$DP[i][j] = A[i][j] + max(DP[i-1][j], DP[i][j])$$ 三.AC代码 1 #i ...

  9. leetcode 刷题(数组篇)152题 乘积最大子数组 (动态规划)

    题目描述 给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积. 示例 1: 输入: [2,3,-2,4] 输出: 6 解释: 子 ...

  10. [Scoi2014]方伯伯的玉米田 二维树状数组+动态规划

    考试最后半个小时才做这道题.十分钟写了个暴力还写挂了..最后默默输出n.菜鸡一只. 这道题比较好看出来是动规.首先我们要明确一点.因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比 ...

随机推荐

  1. html5网页录音

    demo https://xiangyuecn.github.io/Recorder/

  2. maven插件--assembly

    之前maven项目中使用assembly插件单独打包项目依赖包,项目只有一个模块也就一个pom,配置这个插件,一切很顺利.但是现在的项目复杂了,有parent有child,多模块.按照之前的做法怎么也 ...

  3. 使用TCP模拟登陆

    import java.util.ArrayList;import java.util.List; public class UserDB { //使用Map存储账号密码 private static ...

  4. Ubuntu server LTS 16.04安装SSH以及连接问题

    1.SSH安装 出现问题: 登录到Ubuntu服务器,执行以下命令: sudo apt-get install openssh-server 出现以下错误: 解决办法: 1)确保服务器能出外网,比如说 ...

  5. Cocos Creator JS 获取当前日期与时间

    var testDate = new Date(); testDate.getYear();//获取当前年份(2位) testDate.getFullYear(); //获取完整的年份(4位,1970 ...

  6. java操作JacocClient下载dump文件

    记录瞬间 import org.jacoco.core.data.ExecutionDataWriter; import org.jacoco.core.runtime.RemoteControlRe ...

  7. day1:java学习第一天之eclipse安装

    选择开发语言的学习其实不用纠结,如果你说自己是做开发的,连最流行的开发语言都不会,好像说不过去,并且最流行也说明用的人多,优秀的人也会,自己要提高要多向优秀的人学习.想明白这点其实选择就好说了,再一个 ...

  8. Python实现图像直方图均衡化算法

    title: "Python实现图像直方图均衡化算法" date: 2018-06-12T17:10:48+08:00 tags: [""] categorie ...

  9. 大数据处理框架之Strom:DRPC

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 一.DRPC DRPC:Distri ...

  10. java线程学习之synchronized关键字

    关键字synchronized的作用是实现线程间的同步.它的任务是对同步的代码加锁.一个代码块同时只能有同一个线程进行读和写操作,从而保证线程间是安全的. 线程安全的概念是:当多个线程访问某一个类(对 ...