【NOIP2012提高组】国王游戏 贪心 + 高精度
题目分析
题目答案不具有单调性,所以不可以二分,转而思考贪心。因为无法确定位置,所以考虑如何才能让对于每一个$1 ~ i$使得$i$的答案最大,即$1 ~ i$最后一个最优。若设对于位置$i$,$a[i]$表示左手,$b[i]$表示右手,$S$为其前面所有人的左手之积,那么他的答案就是$\frac{S}{b[i]}$,如果存在在$i$后边的$j$的答案更优, 即$\frac{S * a[i]}{b[j]} > \frac{S * a[j]}{b[i]} => a[i] * b[i] > a[j] * b[j]$,这样只要我们以a[i] * b[i]为关键字从小到大排序,就能保证每个前缀的最后一个都是最优的,只要$o(n)$扫一遍取最大值即可,记得使用高精度。
code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std; const int N = ;
int n, a[N], b[N], c[N], ka, kb, kc; inline int read(){
int i = , f = ; char ch = getchar();
for(; (ch < '' || ch > '') && ch != '-'; ch = getchar());
if(ch == '-') f = -, ch = getchar();
for(; ch >= '' && ch <= ''; ch = getchar())
i = (i << ) + (i << ) + (ch - '');
return i * f;
} inline void wr(int x){
if(x < ) putchar('-'), x = -x;
if(x > ) wr(x / );
putchar(x % + '');
} struct bign{
int len, s[];
bign():len(){memset(s, , sizeof s);}
bign(int x):len(){
memset(s, , sizeof s);
while(x){
s[++len] = x % ;
x /= ;
}
if(!len) len = ;
}
inline void clear(){
while(len > && s[len] == ) len--;
}
inline bign operator * (const bign &b) const{
bign ret;
ret.len = len + b.len + ;
for(int i = ; i <= len; i++)
for(int j = ; j <= b.len; j++)
ret.s[i + j - ] += s[i] * b.s[j];
for(int i = ; i <= ret.len; i++)
if(ret.s[i] >= ){
ret.s[i + ] += ret.s[i] / ;
ret.s[i] %= ;
}
ret.clear();
return ret;
}
inline bign operator - (const bign &b) const{
bign ret;
ret.len = len;
for(int i = ; i <= len; i++){
ret.s[i] = ret.s[i] + s[i];
if(i <= b.len) ret.s[i] = ret.s[i] - b.s[i];
if(ret.s[i] < ){
ret.s[i + ]--;
ret.s[i] += ;
}
}
ret.clear();
return ret;
}
bign operator / (int b) {
bign c;
int f = ;
for(int i = len; i >= ; i--){
f = f * + s[i];
while(!(f < b)){
f -= b;
c.s[i]++;
}
}
c.len = len;
c.clear();
return c;
}
inline bool operator > (const bign &b) const{
if(len != b.len) return len > b.len;
for(int i = len; i >= ; i--)
if(s[i] != b.s[i]) return s[i] > b.s[i];
return false;
}
inline bool operator == (const bign &b) const{
if(len != b.len) return false;
for(int i = len; i >= ; i--)
if(s[i] != b.s[i]) return false;
return true;
}
inline bool operator < (const bign &b) const{
if(len != b.len) return len < b.len;
for(int i = len; i >= ; i--)
if(s[i] != b.s[i]) return s[i] < b.s[i];
return false;
}
inline void print(){
for(int i = len; i >= ; i--)
wr(s[i]);
}
}fa, ans, big0, big10; struct node{
int a, b, c;
inline bool operator < (const node &u) const{
if(c != u.c) return c < u.c;
return b > u.b;
}
}data[N]; int main(){
n = read(), ka = read(), kb = read();
for(int i = ; i<= n; i++){
data[i].a = read(), data[i].b = read();
data[i].c = data[i].a * data[i].b;
}
sort(data + , data + n + );
fa = ka;
ans = ;
bign tmpa, t;
for(int i = ; i <= n; i++){
tmpa = data[i].a;
t = fa / data[i].b;
if(t > ans) ans = t;
fa = fa * tmpa;
}
ans.print();
return ;
}
【NOIP2012提高组】国王游戏 贪心 + 高精度的更多相关文章
- [NOIP2012提高组]国王游戏
题目:洛谷P1080.Vijos P1779.codevs1198. 题目大意:国王和每个大臣左.右手各写了一个数.规定每个大臣得到的金币数为他前面所有人左手的数字的乘积除以他自己右手的数(向下取整) ...
- [noip2012]国王游戏<贪心+高精度>
题目链接: https://vijos.org/p/1779 https://www.luogu.org/problem/show?pid=1080 http://codevs.cn/problem/ ...
- P1080 国王游戏 贪心 高精度
题目描述 恰逢 HH国国庆,国王邀请nn 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 nn 位大臣排成一排,国王站在队伍的 ...
- P1080 【NOIP 2012】 国王游戏[贪心+高精度]
题目来源:洛谷 题目描述 恰逢 H国国庆,国王邀请n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王 ...
- NOIP2012提高组
D1T1.Vigenère密码 模拟 #include<iostream> #include<cstdio> using namespace std; int main() { ...
- GZOJ 1361. 国王游戏【NOIP2012提高组DAY1】
国王游戏[NOIP2012提高组DAY1] Time Limit:1000MS Memory Limit:128000K Description 国王游戏(game.cpp/c/pas) [问题描述] ...
- 刷题总结——疫情控制(NOIP2012提高组)
题目: 题目背景 NOIP2012 提高组 DAY2 试题. 题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都,也是树中的根节点. H 国的首都 ...
- 洛谷P1080 [NOIP2012提高组D1T2]国王游戏 [2017年5月计划 清北学堂51精英班Day1]
P1080 国王游戏 题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 ...
- [NOIP2012] 提高组 洛谷P1080 国王游戏
题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 成一排,国王站在队伍 ...
随机推荐
- AsyncCallback BeginInvode endinvode 异步调用
下面是搜藏的代码: //首先准备好,要进行C#异步调用的方法(能C#异步调用的,最好不多线程) private string MethodName(int Num, out int Num2) { N ...
- 项目太大tomcat启动不起来
双击server,Open launch configuration Arguments VM arguments增加参数: -Xms512m -Xmx1024m -Xss4m -XX:PermSiz ...
- PS中矢量形状图层的合并交叉等运算
操作中将用到下图所示的几个按钮 图1.2 减去顶层形状图层为例 1. 上图中,选择矩形工具,以新建图层的形式,新建两个矩形的形状图层,如上右图. PS:可以Shift+A快捷键选中一个形状,然后填 ...
- [React Intl] Get locale value from intl injector
Get 'injectIntl' from 'react-intl', it is a high order componet. We need to wrap our component into ...
- bootstrap课程4 bootstrap的css样式有哪些内容需要注意
bootstrap课程4 bootstrap的css样式有哪些内容需要注意 一.总结 一句话总结: 1.如何选择产品(框架)的版本? 大版本下的最后一个版本,但是同时又要选择稳定的版本,也就是如果做产 ...
- .dmp文件导出使用示例
exp导出的几种用例,先睹为快: 1 将数据库SampleDB完全导出,用户名system 密码manager 导出到E:/SampleDB.dmp中 exp system/manager@TestD ...
- [Maven实战](6)仓库(本地仓库,远程仓库,镜像)
1. 简单介绍 maven能够在某个位置统一存储全部maven项目共享的构件,这个统一的位置就是仓库.实际的Maven项目将不会各自存储其依赖文件,它们仅仅须要声明这些依赖的坐标,在须要的时候(比如. ...
- windows go 安装
go的安装很简单,下载go的msi文件 这里提供go1.9的msi下载链接 https://www.lanzous.com/i2gb54d 直接全部next就行,默认安装在了c盘的go 然后配置环境变 ...
- Facebook开源软件列表
从 Facebook 的 GitHub 账户中可以看到,Facebook 已经开源的开源项目有近 300 个,领域涉及移动.前端.Web.后端.大数据.数据库.工具和硬件等.Facebook 开源项目 ...
- [Javascript] Create scrollable DOM elements with Greensock
In this lesson, we will look at Greensock's Draggable API. We will implement a scrollable <div> ...