P5369 [PKUSC2018]最大前缀和
状态压缩
P5369
题意:求所有排列下的最大前缀和之和
一步转化: 求最大前缀和的前缀由数集S组成的方案数, 统计答案时直接乘上sum(S)即可
考虑最大前缀和的性质:
设最大前缀和为sum[i]
- 到i的后缀均为正数
- i后的前缀均为负数
令sum[i] = 集合 i 内所有数的和。
令f[i] = 集合 i内的数组成的排列,最大前缀和 = sum[i]的方案数。
令g[i] = 集合 i内的数组成的排列,所有的最大前缀和都 < 0 的方案数。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 25;
const int P = 998244353;
int n, a[N];
int f[1050050], g[1050050];
int sum[1050050];
inline int to(int x) {
return 1 << x;
}
int main() {
cin >> n; int all = to(n) - 1;
for (int i = 1;i <= n; i++)
cin >> a[i], f[to(i-1)] = 1, sum[to(i-1)] = a[i];
for (int i = 1;i <= all; i++)
sum[i] = sum[(i & -i)] + sum[i ^ (i & -i)];
g[0] = 1;
for (int i = 0;i < all; i++) {
if (sum[i] >= 0) {
for (int j = 1;j <= n; j++)
if (!(i & to(j-1)))
f[i | to(j-1)] = ((long long)f[i] + f[i | to(j-1)]) % P;
}
else {
for (int j = 1;j <= n; j++)
if (i & (to(j-1)))
g[i] = ((long long)g[i] + g[i ^ to(j-1)]) % P;
}
}
long long ans = 0;
for (int i = 1;i <= all; i++)
ans = (ans + (long long)f[i] * g[all^i] % P * sum[i] % P) % P;
cout << (ans % P + P) % P << endl;
return 0;
}
P5369 [PKUSC2018]最大前缀和的更多相关文章
- 洛谷P5369 [PKUSC2018]最大前缀和 [DP]
传送门 思路 这么一道签到题竟然没切掉真是丢人呢-- 首先有一个\(O(3^n)\)的SB方法,记录\(dp_{S,T}\)表示已经填进去了\(S\),当前最大前缀和集合为\(T\),随便转移.太简单 ...
- [PKUSC2018]最大前缀和
[PKUSC2018]最大前缀和 题目大意: 有\(n(n\le20)\)个数\(A_i(|A_i|\le10^9)\).求这\(n\)个数在随机打乱后最大前缀和的期望值与\(n!\)的积在模\(99 ...
- BZOJ_5369_[Pkusc2018]最大前缀和_状压DP
BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...
- [PKUSC2018]最大前缀和——状压DP
题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...
- LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】
题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...
- BZOJ5369:[PKUSC2018]最大前缀和(状压DP)
Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...
- BZOJ5369 [Pkusc2018]最大前缀和
题意 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C是一个非常有自知之 ...
- bzoj 5369: [Pkusc2018]最大前缀和
Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...
- [PKUSC2018]最大前缀和(DP)
题意:求一个序列随机打乱后最大前缀和的期望. 考场上发现不管怎么设状态都写不出来,实际上只要稍微转换一下就好了. 一个前缀[1..k]是最大前缀,当且仅当前面的所有后缀[k-1,k],[k-2,k], ...
随机推荐
- Oracle 优化器_访问数据的方法_单表
Oracle 在选择执行计划的时候,优化器要决定用什么方法去访问存储在数据文件中的数据.我们从数据文件中查询到相关记录,有两种方法可以实现:1.直接访问表记录所在位置.2.访问索引,拿到索引中对应的r ...
- HTML(一)简介,元素
HTML简介 html实例: <!DOCTYPE html> 菜鸟教程 我的第一个标题 我的第一个段落 实例解析: <!DOCTYPE html> 声明为 HTML5 文档,不 ...
- Python字典排序问题
字典的问题 navagation: 1.问题来源 2.dict的学习 *3.numpy的应用 1.问题来源 在做cs231n,assigment1-kNN实现的时候,需要对一个列表中的元素进行计数,并 ...
- CodeForces 812E Sagheer and Apple Tree 树上nim
Sagheer and Apple Tree 题解: 先分析一下, 如果只看叶子层的话. 那么就相当于 经典的石子问题 nim 博弈了. 那我们看非叶子层. 看叶子层的父亲层. 我们可以发现, 如果从 ...
- Codeforces 369 C Valera and Elections
Valera and Elections 题意:现在有n个候选人, 有n-1条路, 如果选择了这个候选人, 这个候选人就会将从自己这个城市到1号城市上所有坏的路都修复一下,现在求最小的候选人数目, 如 ...
- Codeforces Round #484 (Div. 2) B. Bus of Characters(STL+贪心)982B
原博主:https://blog.csdn.net/amovement/article/details/80358962 B. Bus of Characters time limit per tes ...
- Java微服务(一):dubbo-admin控制台的使用
1.环境准备 使用CentOS7+Docker+Zookeeper3.4.10搭建dubbo微服务 1.1.安装docker容器 (1).uname -r:docker要求CentOS的内核版本高于3 ...
- Requests库整理
一.Requests库的安装 win平台下,直接在命令行使用 pip install requests 即可进行安装 成功后测试如下 >>> import requests > ...
- open的正确使用
open一个对象的时候,不确定他是图片还是文本啊 #----------------------- import io with open('photo.jpg', 'rb') as inf: ...
- 如何完美激活pycharm2019.2.2
本号持续关注pycharm的更新,这不本月11号迎来新版本,为防走丢,请关注公众号,让我们携手并行!有道是"予人玫瑰手留余香",分享的确是件令人愉快的事,这也是我创建公众号的初心. ...