TensorFlow2.0教程-使用keras训练模型
1.一般的模型构造、训练、测试流程
# 模型构造
inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()]) # 载入数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255 x_val = x_train[-10000:]
y_val = y_train[-10000:] x_train = x_train[:-10000]
y_train = y_train[:-10000] # 训练模型
history = model.fit(x_train, y_train, batch_size=64, epochs=3,
validation_data=(x_val, y_val))
print('history:')
print(history.history) result = model.evaluate(x_test, y_test, batch_size=128)
print('evaluate:')
print(result)
pred = model.predict(x_test[:2])
print('predict:')
print(pred)
2.自定义损失和指标
自定义指标只需继承Metric类, 并重写一下函数
_init_(self),初始化。
update_state(self,y_true,y_pred,sample_weight = None),它使用目标y_true和模型预测y_pred来更新状态变量。
result(self),它使用状态变量来计算最终结果。
reset_states(self),重新初始化度量的状态。
# 这是一个简单的示例,显示如何实现CatgoricalTruePositives指标,该指标计算正确分类为属于给定类的样本数量 class CatgoricalTruePostives(keras.metrics.Metric):
def __init__(self, name='binary_true_postives', **kwargs):
super(CatgoricalTruePostives, self).__init__(name=name, **kwargs)
self.true_postives = self.add_weight(name='tp', initializer='zeros') def update_state(self, y_true, y_pred, sample_weight=None):
y_pred = tf.argmax(y_pred)
y_true = tf.equal(tf.cast(y_pred, tf.int32), tf.cast(y_true, tf.int32)) y_true = tf.cast(y_true, tf.float32) if sample_weight is not None:
sample_weight = tf.cast(sample_weight, tf.float32)
y_true = tf.multiply(sample_weight, y_true) return self.true_postives.assign_add(tf.reduce_sum(y_true)) def result(self):
return tf.identity(self.true_postives) def reset_states(self):
self.true_postives.assign(0.) model.compile(optimizer=keras.optimizers.RMSprop(1e-3),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[CatgoricalTruePostives()]) model.fit(x_train, y_train,
batch_size=64, epochs=3)
# 以定义网络层的方式添加网络loss
class ActivityRegularizationLayer(layers.Layer):
def call(self, inputs):
self.add_loss(tf.reduce_sum(inputs) * 0.1)
return inputs inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = ActivityRegularizationLayer()(h1)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(x_train, y_train, batch_size=32, epochs=1)
# 也可以以定义网络层的方式添加要统计的metric
class MetricLoggingLayer(layers.Layer):
def call(self, inputs):
self.add_metric(keras.backend.std(inputs),
name='std_of_activation',
aggregation='mean') return inputs inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = MetricLoggingLayer()(h1)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(x_train, y_train, batch_size=32, epochs=1)
# 也可以直接在model上面加
# 也可以以定义网络层的方式添加要统计的metric
class MetricLoggingLayer(layers.Layer):
def call(self, inputs):
self.add_metric(keras.backend.std(inputs),
name='std_of_activation',
aggregation='mean') return inputs inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h2 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h2)
model = keras.Model(inputs, outputs) model.add_metric(keras.backend.std(inputs),
name='std_of_activation',
aggregation='mean')
model.add_loss(tf.reduce_sum(h1)*0.1) # keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(x_train, y_train, batch_size=32, epochs=1)
处理使用validation_data传入测试数据,还可以使用validation_split划分验证数据
ps:validation_split只能在用numpy数据训练的情况下使用
model.fit(x_train, y_train, batch_size=32, epochs=1, validation_split=0.2)
3.使用tf.data构造数据
def get_compiled_model():
inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h2 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h2)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
return model
model = get_compiled_model()
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64) # model.fit(train_dataset, epochs=3)
# steps_per_epoch 每个epoch只训练几步
# validation_steps 每次验证,验证几步
model.fit(train_dataset, epochs=3, steps_per_epoch=100,
validation_data=val_dataset, validation_steps=3)
4.样本权重和类权重
“样本权重”数组是一个数字数组,用于指定批处理中每个样本在计算总损失时应具有多少权重。 它通常用于不平衡的分类问题(这个想法是为了给予很少见的类更多的权重)。 当使用的权重是1和0时,该数组可以用作损失函数的掩码(完全丢弃某些样本对总损失的贡献)。
“类权重”dict是同一概念的更具体的实例:它将类索引映射到应该用于属于该类的样本的样本权重。 例如,如果类“0”比数据中的类“1”少两倍,则可以使用class_weight = {0:1.,1:0.5}。
# 增加第5类的权重
import numpy as np
# 样本权重
model = get_compiled_model()
class_weight = {i:1.0 for i in range(10)}
class_weight[5] = 2.0
print(class_weight)
model.fit(x_train, y_train,
class_weight=class_weight,
batch_size=64,
epochs=4)
# 类权重
model = get_compiled_model()
sample_weight = np.ones(shape=(len(y_train),))
sample_weight[y_train == 5] = 2.0
model.fit(x_train, y_train,
sample_weight=sample_weight,
batch_size=64,
epochs=4)
5.多输入多输出模型
image_input = keras.Input(shape=(32, 32, 3), name='img_input')
timeseries_input = keras.Input(shape=(None, 10), name='ts_input') x1 = layers.Conv2D(3, 3)(image_input)
x1 = layers.GlobalMaxPooling2D()(x1) x2 = layers.Conv1D(3, 3)(timeseries_input)
x2 = layers.GlobalMaxPooling1D()(x2) x = layers.concatenate([x1, x2]) score_output = layers.Dense(1, name='score_output')(x)
class_output = layers.Dense(5, activation='softmax', name='class_output')(x) model = keras.Model(inputs=[image_input, timeseries_input],
outputs=[score_output, class_output])
keras.utils.plot_model(model, 'multi_input_output_model.png'
, show_shapes=True)
# 可以为模型指定不同的loss和metrics
model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss=[keras.losses.MeanSquaredError(),
keras.losses.CategoricalCrossentropy()]) # 还可以指定loss的权重
model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss={'score_output': keras.losses.MeanSquaredError(),
'class_output': keras.losses.CategoricalCrossentropy()},
metrics={'score_output': [keras.metrics.MeanAbsolutePercentageError(),
keras.metrics.MeanAbsoluteError()],
'class_output': [keras.metrics.CategoricalAccuracy()]},
loss_weight={'score_output': 2., 'class_output': 1.}) # 可以把不需要传播的loss置0
model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss=[None, keras.losses.CategoricalCrossentropy()]) # Or dict loss version
model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss={'class_output': keras.losses.CategoricalCrossentropy()})
6.使用回调
Keras中的回调是在训练期间(在epoch开始时,batch结束时,epoch结束时等)在不同点调用的对象,可用于实现以下行为:
在培训期间的不同时间点进行验证(超出内置的每个时期验证)
定期检查模型或超过某个精度阈值
在训练似乎平稳时改变模型的学习率
在训练似乎平稳时对顶层进行微调
在培训结束或超出某个性能阈值时发送电子邮件或即时消息通知等等。
可使用的内置回调有
ModelCheckpoint:定期保存模型。
EarlyStopping:当训练不再改进验证指标时停止培训。
TensorBoard:定期编写可在TensorBoard中显示的模型日志(更多细节见“可视化”)。
CSVLogger:将丢失和指标数据流式传输到CSV文件。
等等
6.1回调使用
model = get_compiled_model() callbacks = [
keras.callbacks.EarlyStopping(
# Stop training when `val_loss` is no longer improving
monitor='val_loss',
# "no longer improving" being defined as "no better than 1e-2 less"
min_delta=1e-2,
# "no longer improving" being further defined as "for at least 2 epochs"
patience=2,
verbose=1)
]
model.fit(x_train, y_train,
epochs=20,
batch_size=64,
callbacks=callbacks,
validation_split=0.2)
# checkpoint模型回调
model = get_compiled_model()
check_callback = keras.callbacks.ModelCheckpoint(
filepath='mymodel_{epoch}.h5',
save_best_only=True,
monitor='val_loss',
verbose=1
) model.fit(x_train, y_train,
epochs=3,
batch_size=64,
callbacks=[check_callback],
validation_split=0.2)
# 动态调整学习率
initial_learning_rate = 0.1
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=10000,
decay_rate=0.96,
staircase=True
)
optimizer = keras.optimizers.RMSprop(learning_rate=lr_schedule)
# 使用tensorboard
tensorboard_cbk = keras.callbacks.TensorBoard(log_dir='./full_path_to_your_logs')
model.fit(x_train, y_train,
epochs=5,
batch_size=64,
callbacks=[tensorboard_cbk],
validation_split=0.2)
6.2创建自己的回调方法
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs):
self.losses = []
def on_epoch_end(self, batch, logs):
self.losses.append(logs.get('loss'))
print('\nloss:',self.losses[-1]) model = get_compiled_model() callbacks = [
LossHistory()
]
model.fit(x_train, y_train,
epochs=3,
batch_size=64,
callbacks=callbacks,
validation_split=0.2)
7.自己构造训练和验证循环
# Get the model.
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)
model = keras.Model(inputs=inputs, outputs=outputs) # Instantiate an optimizer.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
loss_fn = keras.losses.SparseCategoricalCrossentropy() # Prepare the training dataset.
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size) # 自己构造循环
for epoch in range(3):
print('epoch: ', epoch)
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
# 开一个gradient tape, 计算梯度
with tf.GradientTape() as tape:
logits = model(x_batch_train) loss_value = loss_fn(y_batch_train, logits)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 200 == 0:
print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
print('Seen so far: %s samples' % ((step + 1) * 64))
# 训练并验证
# Get model
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)
model = keras.Model(inputs=inputs, outputs=outputs) # Instantiate an optimizer to train the model.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
loss_fn = keras.losses.SparseCategoricalCrossentropy() # Prepare the metrics.
train_acc_metric = keras.metrics.SparseCategoricalAccuracy()
val_acc_metric = keras.metrics.SparseCategoricalAccuracy() # Prepare the training dataset.
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size) # Prepare the validation dataset.
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64) # Iterate over epochs.
for epoch in range(3):
print('Start of epoch %d' % (epoch,)) # Iterate over the batches of the dataset.
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
with tf.GradientTape() as tape:
logits = model(x_batch_train)
loss_value = loss_fn(y_batch_train, logits)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables)) # Update training metric.
train_acc_metric(y_batch_train, logits) # Log every 200 batches.
if step % 200 == 0:
print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
print('Seen so far: %s samples' % ((step + 1) * 64)) # Display metrics at the end of each epoch.
train_acc = train_acc_metric.result()
print('Training acc over epoch: %s' % (float(train_acc),))
# Reset training metrics at the end of each epoch
train_acc_metric.reset_states() # Run a validation loop at the end of each epoch.
for x_batch_val, y_batch_val in val_dataset:
val_logits = model(x_batch_val)
# Update val metrics
val_acc_metric(y_batch_val, val_logits)
val_acc = val_acc_metric.result()
val_acc_metric.reset_states()
print('Validation acc: %s' % (float(val_acc),))
## 添加自己构造的loss, 每次只能看到最新一次训练增加的loss
class ActivityRegularizationLayer(layers.Layer): def call(self, inputs):
self.add_loss(1e-2 * tf.reduce_sum(inputs))
return inputs inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
# Insert activity regularization as a layer
x = ActivityRegularizationLayer()(x)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x) model = keras.Model(inputs=inputs, outputs=outputs)
logits = model(x_train[:64])
print(model.losses)
logits = model(x_train[:64])
logits = model(x_train[64: 128])
logits = model(x_train[128: 192])
print(model.losses)
# 将loss添加进求导中
optimizer = keras.optimizers.SGD(learning_rate=1e-3) for epoch in range(3):
print('Start of epoch %d' % (epoch,)) for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
with tf.GradientTape() as tape:
logits = model(x_batch_train)
loss_value = loss_fn(y_batch_train, logits) # Add extra losses created during this forward pass:
loss_value += sum(model.losses) grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables)) # Log every 200 batches.
if step % 200 == 0:
print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
print('Seen so far: %s samples' % ((step + 1) * 64))
如果还有问题未能得到解决,搜索887934385交流群,进入后下载资料工具安装包等。最后,感谢观看!
TensorFlow2.0教程-使用keras训练模型的更多相关文章
- 基于tensorflow2.0 使用tf.keras实现Fashion MNIST
本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflo ...
- 一文上手Tensorflow2.0之tf.keras(三)
系列文章目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU ...
- 用keras构建自己的网络层 TensorFlow2.0教程
1.构建一个简单的网络层 from __future__ import absolute_import, division, print_function import tensorflow as t ...
- 『TensorFlow2.0正式版』TF2.0+Keras速成教程·零:开篇简介与环境准备
此篇教程参考自TensorFlow 2.0 + Keras Crash Course,在原文的基础上进行了适当的总结与改编,以适应于国内开发者的理解与使用,水平有限,如果写的不对的地方欢迎大家评论指出 ...
- 『TensorFlow2.0正式版教程』极简安装TF2.0正式版(CPU&GPU)教程
0 前言 TensorFlow 2.0,今天凌晨,正式放出了2.0版本. 不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了. 本篇文章就 ...
- TensorFlow2.0(11):tf.keras建模三部曲
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- TensorFlow2.0提示Cannot find reference 'keras' in __init__.py
使用TensorFlow2.0导入from tensorflow.keras import layers会出现Cannot find reference 'keras' in __init__.py提 ...
- TensorFlow模型部署到服务器---TensorFlow2.0
前言 当一个TensorFlow模型训练出来的时候,为了投入到实际应用,所以就需要部署到服务器上.由于我本次所做的项目是一个javaweb的图像识别项目.所有我就想去寻找一下java调用Tenso ...
- TensorFlow2.0(9):TensorBoard可视化
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
随机推荐
- 【Android】Android Studio NDK 开发
Android Studio NDK 开发 记录在Android Studio中NDK简单开发的步骤 用到的Android Studio版本为3.5. 配置NDK 下载NDK 一般在SDK下已经有自带 ...
- Android 弹出Dialog时隐藏状态栏和底部导航栏
上代码 dialog.getWindow().getDecorView().setSystemUiVisibility(View.SYSTEM_UI_FLAG_HIDE_NAVIGATION); di ...
- 原创【cocos2d-x】CCMenuItemToggle 在lua中的使用
说明:1,所使用的cocos2dx版本为2.1.3 ;09:48:05 2,本人仍是在学习中的小菜鸟,此博客只是为了记录我学习过程中的点滴,同时也希望同样lua开发的童鞋,一起交流: 3,本人whj0 ...
- jQuery-实现简单的Ajax请求封装
封装的意义在于复用,在于减少重复的代码. 我在项目中做了简单的Ajax请求封装,实现方式如下: //封装Ajax请求 $.extend({ ajaxDirect:function(url,type,d ...
- adb devices无法连接mumu模拟器
解决方案: 如果你的android环境能够直接访问 adb 的相关指令.只需要把mumu模拟器打开 然后打开cmd -> 输入 adb connect 127.0.0.1:7555 就能直接连上 ...
- C++入门到理解阶段二基础篇(9)——C++结构体
1.概述 前面我们已经了解到c++内置了常用的数据类型,比如int.long.double等,但是如果我们要定义一个学生这样的数据类型,c++是没有的,此时就要用到结构体,换言之通过结构体可以帮我们定 ...
- ASP.NET webform总结
一.asp.net中的内置对象1.Page对象属性:isPostBack 回传 返回bool类型通过url访问就是首次加载,通过控件事件访问页面就是回传.二.页面的执行过程 a.每次访问页面,或访问页 ...
- Linux中哪些工具堪称神器?
作者:int32bit www.zhihu.com/question/59227720 ag:比grep.ack更快的递归搜索文件内容. Github地址: https://github.com/gg ...
- 如何解决eclipse远程服务器上面的Rabbitmq连接超时问题?
1.嗯,问题呢,就是一开始安装好RabbitMQ,练习了一下RabbitMQ的使用,但是呢,过了一段时间,我来复习的时候,发现运行出现下面的错误了.后来想想,是自己学习微服务的时候,修改了/etc/h ...
- selenium自动化测试爬取动态页面大全
目录 一:浏览器信息测试 二:查找结点 三:测试动作 四:获取节点信息 五:切换子页面Frame 六,延时请求 七:前进和后退 八:Cookies 八:选项卡处理 九:捕获异常 这里之讲解用法,安 ...