洛谷题目传送门

萝卜大毒瘤

题意可以简化成这样:给一个DAG,求每个点能够从多少个入度为\(0\)的点到达(记为\(k\))。

一个随机做法:给每个入度为\(0\)的点随机一个权值,在DAG上求出每个点能够返回到的入度为\(0\)的点的最小权值,那么这个权值的期望是\(\frac{\text{随机值域}}{k+1}\)。多选几套随机权值(蒟蒻选了一百次),跑出来的平均值即可输出。

实在是太玄学了。

#include<bits/stdc++.h>
#define LL unsigned long long
#define RG register
#define R RG int
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
#define F(S) if(freopen(S".in","r",stdin));if(freopen(S".out","w",stdout))
using namespace std;
const int SZ=1<<18,N=1e6+1,S=50,T=2;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
inline int Min(R x,R y){
return x<y?x:y;
}
int f[N][S],c[N][2];
double ans[N];
int main(){
srand(20020307);
R n=in(),m=in();
for(R i=m+1;i<=n;++i)
c[i][0]=in(),c[i][1]=in();
for(R t=T;t;--t){
for(R i=1;i<=m;++i)
for(R j=0;j<S;++j)
f[i][j]=rand();
for(R i=m+1;i<=n;++i)
for(R j=0;j<S;++j)
ans[i]+=f[i][j]=Min(f[c[i][0]][j],f[c[i][1]][j]);
}
for(R i=m+1;i<=n;++i)
printf("%d\n",(int)(RAND_MAX/ans[i]*S*T-0.5));
return 0;
}

洛谷P4581 [BJOI2014]想法(玄学算法,拓扑排序)的更多相关文章

  1. 洛谷P1137 旅行计划 解题报告(拓扑排序+DP)

    我看了一下其他大佬的题解,大部分都是拓扑排序加上DP.那么我想有的人是不明白为什么这么做的,拓扑排序有什么性质使得可以DP呢?下面我就提一下. 对一个有向无环图(Directed Acyclic Gr ...

  2. 洛谷2805 [NOI2009]植物大战僵尸 (拓扑排序+最小割)

    坚决抵制长题面的题目! 首先观察到这个题目中,我们会发现,我们对于原图中的保护关系(一个点右边的点对于这个点也算是保护) 相当于一种依赖. 那么不难看出这个题实际上是一个最大权闭合子图模型. 我们直接 ...

  3. 洛谷P3243 [HNOI2015]菜肴制作 (拓扑排序/贪心)

    这道题的贪心思路可真是很难证明啊...... 对于<i,j>的限制(i必须在j之前),容易想到topsort,每次在入度为0的点中选取最小的.但这种正向找是错误的,题目要求的是小的节点尽量 ...

  4. AOV网络和Kahn算法拓扑排序

    1.AOV与DAG 活动网络可以用来描述生产计划.施工过程.生产流程.程序流程等工程中各子工程的安排问题.   一般一个工程可以分成若干个子工程,这些子工程称为活动(Activity).完成了这些活动 ...

  5. 洛谷P1119-灾后重建-floyd算法

    洛谷P1119-灾后重建 题目描述 给出\(B\)地区的村庄数NN,村庄编号从\(0\)到\(N-1\),和所有\(M\)条公路的长度,公路是双向的. 给出第\(i\)个村庄重建完成的时间\(t_i\ ...

  6. 2019/5/13 洛谷P4742 【tarjan缩点 + 拓扑dp】

    题目链接:https://www.luogu.org/problemnew/show/P4742 题目大意:给一张有向图, 每个点都有点权,第一次经过该点时,该点的点权有贡献,求这张图上一条路径(终点 ...

  7. Java排序算法——拓扑排序

    package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...

  8. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

  9. 洛谷P4219 - [BJOI2014]大融合

    Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...

随机推荐

  1. Elasticsearch 5.0Head插件

    Elasticsearch 5.0 —— Head插件部署指南   使用ES的基本都会使用过head,但是版本升级到5.0后,head插件就不好使了.下面就看看如何在5.0中启动Head插件吧! 官方 ...

  2. [转帖]中关村:LED屏幕和OLED屏幕有什么区别?答案在这里

    LED屏幕和OLED屏幕有什么区别?答案在这里   中关村在线 01-0810:40 目前的电视市场,更新换代的频率越来越快,无论是国产品牌还是合资品牌,都不约而同的推出了全新产品.这离不开人们对更好 ...

  3. [转帖]2015年时微软Win3.1崩溃迫使巴黎奥利机场短暂关闭

    https://www.ithome.com/html/it/188796.htm IT之家讯 2015年11月14日消息,上周法国巴黎奥利机场因为微软的Windows 3.1系统出现故障不得不迫使所 ...

  4. 【360图书馆】插入U盘自动攻击:BadUSB原理与实现

    插入U盘自动攻击:BadUSB原理与实现       漏洞背景 “BadUSB”是今年计算机安全领域的热门话题之一,该漏洞由Karsten Nohl和Jakob Lell共同发现,并在今年的Black ...

  5. vant的坑

    1.轮播图设置, .img { width: 100%; height: 100%; object-fit: cover; touch-action: none; } 如果不设置不能达到 保持纵横比缩 ...

  6. Spring框架IOC和AOP的实现原理

    IoC(Inversion of Control) (1). IoC(Inversion of Control)是指容器控制程序对象之间的关系,而不是传统实现中,由程序代码直接操控.控制权由应用代码中 ...

  7. java.util.concurrent.TimeoutException: Idle timeout expired: 300000/300000 ms

    Request idle timed out at 123000 ms. That means there was no activity (read or write) for 123000 ms ...

  8. jQuery AJAX获取JSON数据解析多种方式示例

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. JQuery Datatable用法

    原文出处:http://sgyyz.blog.51cto.com/5069360/1408251 目标: 使用jQuery Datatable构造数据列表,并且增加或者隐藏相应的列,已达到数据显示要求 ...

  10. How to mount EFI on macOS

    mount -t msdos /dev/disk0s1 /volumes/efi