洛谷P4581 [BJOI2014]想法(玄学算法,拓扑排序)
萝卜大毒瘤
题意可以简化成这样:给一个DAG,求每个点能够从多少个入度为\(0\)的点到达(记为\(k\))。
一个随机做法:给每个入度为\(0\)的点随机一个权值,在DAG上求出每个点能够返回到的入度为\(0\)的点的最小权值,那么这个权值的期望是\(\frac{\text{随机值域}}{k+1}\)。多选几套随机权值(蒟蒻选了一百次),跑出来的平均值即可输出。
实在是太玄学了。
#include<bits/stdc++.h>
#define LL unsigned long long
#define RG register
#define R RG int
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
#define F(S) if(freopen(S".in","r",stdin));if(freopen(S".out","w",stdout))
using namespace std;
const int SZ=1<<18,N=1e6+1,S=50,T=2;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
inline int Min(R x,R y){
return x<y?x:y;
}
int f[N][S],c[N][2];
double ans[N];
int main(){
srand(20020307);
R n=in(),m=in();
for(R i=m+1;i<=n;++i)
c[i][0]=in(),c[i][1]=in();
for(R t=T;t;--t){
for(R i=1;i<=m;++i)
for(R j=0;j<S;++j)
f[i][j]=rand();
for(R i=m+1;i<=n;++i)
for(R j=0;j<S;++j)
ans[i]+=f[i][j]=Min(f[c[i][0]][j],f[c[i][1]][j]);
}
for(R i=m+1;i<=n;++i)
printf("%d\n",(int)(RAND_MAX/ans[i]*S*T-0.5));
return 0;
}
洛谷P4581 [BJOI2014]想法(玄学算法,拓扑排序)的更多相关文章
- 洛谷P1137 旅行计划 解题报告(拓扑排序+DP)
我看了一下其他大佬的题解,大部分都是拓扑排序加上DP.那么我想有的人是不明白为什么这么做的,拓扑排序有什么性质使得可以DP呢?下面我就提一下. 对一个有向无环图(Directed Acyclic Gr ...
- 洛谷2805 [NOI2009]植物大战僵尸 (拓扑排序+最小割)
坚决抵制长题面的题目! 首先观察到这个题目中,我们会发现,我们对于原图中的保护关系(一个点右边的点对于这个点也算是保护) 相当于一种依赖. 那么不难看出这个题实际上是一个最大权闭合子图模型. 我们直接 ...
- 洛谷P3243 [HNOI2015]菜肴制作 (拓扑排序/贪心)
这道题的贪心思路可真是很难证明啊...... 对于<i,j>的限制(i必须在j之前),容易想到topsort,每次在入度为0的点中选取最小的.但这种正向找是错误的,题目要求的是小的节点尽量 ...
- AOV网络和Kahn算法拓扑排序
1.AOV与DAG 活动网络可以用来描述生产计划.施工过程.生产流程.程序流程等工程中各子工程的安排问题. 一般一个工程可以分成若干个子工程,这些子工程称为活动(Activity).完成了这些活动 ...
- 洛谷P1119-灾后重建-floyd算法
洛谷P1119-灾后重建 题目描述 给出\(B\)地区的村庄数NN,村庄编号从\(0\)到\(N-1\),和所有\(M\)条公路的长度,公路是双向的. 给出第\(i\)个村庄重建完成的时间\(t_i\ ...
- 2019/5/13 洛谷P4742 【tarjan缩点 + 拓扑dp】
题目链接:https://www.luogu.org/problemnew/show/P4742 题目大意:给一张有向图, 每个点都有点权,第一次经过该点时,该点的点权有贡献,求这张图上一条路径(终点 ...
- Java排序算法——拓扑排序
package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...
- 洛谷 P4219 [BJOI2014]大融合 解题报告
P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...
- 洛谷P4219 - [BJOI2014]大融合
Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...
随机推荐
- js中的join(),reverse()与 split()函数用法解析
<script> /* * 1:arrayObject.reverse() * 注意: 该方法会改变原来的数组,而不会创建新的数组.此函数可以将数组倒序排列 * 2:arrayObject ...
- DevOps工程师到底做些什么?
我们之前已经听到很多谈论DevOps和DevOps世界的最新趋势的事情,但是就DevOps工程师本身,到底干些什么呢? 在最纯粹的存在形式上来说,DevOps工程师是为了加快开发和运营团队之间的交付效 ...
- 记第一次多用户在Git提交代码
今天第一次进行了多用户(其实就两人)在自建Git服务器提交代码. 先记录碰到的问题:首先是本地提交代码时,进行了add,commit后,在push时碰到服务器故障,待设置好服务器后,再push时,却p ...
- Python之加环境变量
1.python找文件是先去当前文件所在的文件夹下找,也就是bin目录下找 2.如果bin目录里找不到,再去python的环境变量里找 如果有pycharm,那么直接点右键-选择Mark Direct ...
- telnet总结
telnet是经常使用的客户端链接工具,总结一下常用的telnet的使用方法 1) 连接 telnet //链接swoole 2)退出当前连接 ctrl + ] 回车 3)查看常用的一些命令 ? 回车 ...
- Azure系列2.1.3 —— BlobEncryptionPolicy
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...
- [转帖]xserver相关知识汇总
xserver相关知识汇总 https://blog.csdn.net/QTVLC/article/details/81739984 本文主要是从以下几个方面介绍xorg-xserver 相关的知 ...
- Day 4-1 模块的导入方法和路径
什么是模块? 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码 ...
- NIO服务器与客户端
这里客户端没有采用NIO形式 服务器: package com.util.Server.NIO; import javax.print.DocFlavor;import java.io.IOExcep ...
- 移动APP用例设计中的关键点(转载)
http://www.51testing.com/html/52/n-4421752.html 在测试工作中我们需要不断的总结和储备自己的知识和经验,譬如具备特定属性.环境以及场景,如:PC,手机,智 ...