P4180 [BJWC2010]严格次小生成树
P4180 [BJWC2010]严格次小生成树
题意
求出一个无向联通图的严格次小生成树。严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次小生成树之间(不相等)。
思路
先求出一颗最小生成树,发现严格次小生成树一定是其断了一条边并加了一条边且边权和的增加量最小。
那么我们继续在最小生成树上做。对于每一条不是最小生成树上的边,求出其两端两点间在最小生成树上路径上的边的最大值。然鹅,如果用倍增LCA找,发现如果求出来的最大值与该边权值相等,那么得出的答案就是不合法的。所以我们还必须维护一个倍增范围内严格次小边权。
然后找到最小的值输出就行啦!
对于维护严格次小的值,我认为可以先求出最大值,然后比较找出与最大值不等的最大值就是次大值。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#define int long long
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=1e5+10,maxm=3e5+10,INF=0x3f3f3f3f3f3f3f3f;
int n,m;
struct Edge{
int u,v,dis;
bool is;
inline bool operator <(const Edge &zp)const {return dis<zp.dis;}
}e[maxm];
int ecnt,head[maxn],to[maxn<<1],Fa[maxn],nxt[maxn<<1],v[maxn<<1],ans=INF,sum,fa[maxn][25],mx[maxn][25],pmx[maxn][25],dep[maxn];
inline int find(int x){return Fa[x]==x?x:Fa[x]=find(Fa[x]);}
inline void addedge(int a,int b,int c){
to[++ecnt]=b,nxt[ecnt]=head[a],head[a]=ecnt,v[ecnt]=c;
to[++ecnt]=a,nxt[ecnt]=head[b],head[b]=ecnt,v[ecnt]=c;
}
inline void kruskal(){
for(int i=1;i<=n;i++)Fa[i]=i;
sort(e+1,e+1+m);
int cnt=0;
for(int i=1;i<=m;i++){
int fx=find(e[i].u),fy=find(e[i].v);
if(fx!=fy){
Fa[fx]=fy;
addedge(e[i].u,e[i].v,e[i].dis);
e[i].is=1;
sum+=e[i].dis;
if(++cnt==n-1)break;
}
}
}
void dfs(int x,int f){
fa[x][0]=f;
dep[x]=dep[f]+1;
for(int i=0;i<=20;i++){
fa[x][i+1]=fa[fa[x][i]][i];
mx[x][i+1]=max(mx[x][i],mx[fa[x][i]][i]);
if(mx[x][i+1]!=mx[x][i])pmx[x][i+1]=max(pmx[x][i+1],mx[x][i]);
if(mx[x][i+1]!=mx[fa[x][i]][i])pmx[x][i+1]=max(pmx[x][i+1],mx[fa[x][i]][i]);
if(mx[x][i+1]!=pmx[x][i])pmx[x][i+1]=max(pmx[x][i+1],pmx[x][i]);
if(mx[x][i+1]!=pmx[fa[x][i]][i])pmx[x][i+1]=max(pmx[x][i+1],pmx[fa[x][i]][i]);
}
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(u==f)continue;
mx[u][0]=v[i];
dfs(u,x);
}
}
inline void LCA(int x,int y,int &mxx,const int &MX){
if(dep[x]<dep[y])swap(x,y);
for(int i=20;i+1;i--)if(dep[fa[x][i]]>=dep[y]){
if(mx[x][i]!=MX)mxx=max(mxx,mx[x][i]);
else mxx=max(mxx,pmx[x][i]);
x=fa[x][i];
}
if(x==y)return;
for(int i=20;i+1;i--)if(fa[x][i]!=fa[y][i]){
if(mx[x][i]!=MX)mxx=max(mxx,mx[x][i]);
else mxx=max(mxx,pmx[x][i]);
x=fa[x][i];
if(mx[y][i]!=MX)mxx=max(mxx,mx[y][i]);
else mxx=max(mxx,pmx[y][i]);
y=fa[y][i];
}
if(mx[x][0]!=MX)mxx=max(mxx,mx[x][0]);
else mxx=max(mxx,pmx[x][0]);
if(mx[y][0]!=MX)mxx=max(mxx,mx[y][0]);
else mxx=max(mxx,pmx[y][0]);
}
inline void work(){
n=read(),m=read();
for(int i=1;i<=m;i++)e[i].u=read(),e[i].v=read(),e[i].dis=read();
kruskal();
dfs(1,0);
for(int i=1;i<=m;i++)if(!e[i].is){
int x=e[i].u,y=e[i].v,MX=-INF;
LCA(x,y,MX,e[i].dis);
ans=min(ans,sum-MX+e[i].dis);
}
printf("%lld",ans);
}
}
signed main(){
star::work();
return 0;
}
P4180 [BJWC2010]严格次小生成树的更多相关文章
- 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...
- [BJWC2010]严格次小生成树(LCA,最小生成树)
[BJWC2010]严格次小生成树 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图 ...
- 洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】
严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- [BJWC2010] 严格次小生成树
[BJWC2010]严格次小生成树算法及模板 所谓次小生成树,即边权之和第二小的生成树,但所谓严格,就是不能和最小的那个相等. 求解严格次小生成树的方法一般有倍增和LCT两种.当然LCT那么高级的我当 ...
- 【洛谷P4180】严格次小生成树
题目大意:给定一个 N 个顶点,M 条边的带权无向图,求该无向图的一个严格次小生成树. 引理:有至少一个严格次小生成树,和最小生成树之间只有一条边的差异. 题解: 通过引理可以想到一个暴力,即:先求出 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得 ...
- BZOJ1977/LuoguP4180【模板】严格次小生成树[BJWC2010] (次小生成树)
这道题本身思维难度不大,但综合性强,细节多 在其上浪一个早上,你的 最小生成树 树链剖分 线段树 DEBUG能力... 都大幅提升 细节与思路都在代码里面了. 欢迎hack. #include< ...
- [Luogu] 次小生成树
https://www.luogu.org/problemnew/show/P4180#sub 严格次小生成树,即不等于最小生成树中的边权之和最小的生成树 首先求出最小生成树,然后枚举所有不在最小生成 ...
随机推荐
- iSCSI网络磁盘
一.fdisk 划分 分区 [root@server0 ~]# lsblk [root@server0 ~]# fdisk /dev/vdb 三个主分区 , 分别2个G大小 两个逻辑分区 , 分别1个 ...
- docker安装nextcloud私人网盘,开启https配置证书
docker安装nextcloud私人网盘 之前一直用的百度网盘最近svip超级会员到期了,续费要¥199元,对于一个打工人的我来说有点儿贵.作为技术人的一员,我就来发挥发挥自己的长处,来搭建一个私人 ...
- Maven笔记(更新中)
Maven 1.学习目标 会使用maven构建项目的命令 会使用maven构建java项目和java web项目 依赖管理--传递依赖 版本冲突处理 在web的单个工程中实现jsp+servlet整合 ...
- 低代码开发LCDP,Power Apps系列 - 搭建入职选购电脑设备案例
低代码简介 上世纪八十年代,美国就有一些公司和实验室开始了可视化编程的研究,做出了4GL"第四代编程语言",到后来衍生成VPL"Visual Programming La ...
- 图解协程调度模型-GMP模型
现在无论是客户端.服务端或web开发都会涉及到多线程的概念.那么大家也知道,线程是操作系统能够进行运算调度的最小单位,同一个进程中的多个线程都共享这个进程的全部系统资源. 线程 三个基本概念 内核线程 ...
- 二QT中使用QTimer定时器
QT中的定时器类叫QTimer(5.8以上版本才有),构造函数只需要提供父对象的指针 使用的话,需要调用QTImer的start方法,该方法以毫秒单位,每过指定毫秒时间,该类对象就会发出一个timeo ...
- Spring Boot配置Filter
此博客是学习Spring Boot过程中记录的,一来为了加深自己的理解,二来也希望这篇博客能帮到有需要的朋友.同时如果有错误,希望各位不吝指教 一.通过注入Bean的方式配置Filter: 注意:此方 ...
- Quartz:Quartz定时代码实现
1.添加pom.xml <dependency> <groupId>org.quartz-scheduler</groupId> <artifactId> ...
- ExtJs4学习(五)最基本的Ext类
Ext类是ExtJs中最常见.最基础的一个类,它是一个全局对象,封装了所有类.单例和 Sencha 库所提供的实用方法. 大多数用户界面组件在一个较低的层次嵌套在命名空间中, 但是提供的许多常见的实用 ...
- hadoop学习(三)HDFS常用命令以及java操作HDFS
一.HDFS的常用命令 1.查看根目录下的信息:./hadoop dfs -ls 2.查看根目录下的in目录中的内容:./hadoop dfs -ls in或者./hadoop dfs -ls ./i ...