CF1542E2 Abnormal Permutation Pairs (hard version)
good tea。
对于两个排列 \(p,q\),如果 \(p\) 的字典序小于 \(q\),则要么 \(p_1<q_1\),要么存在一个 \(i\) 使得 \(p_{1\sim i}=q_{1\sim i}\) 且 \(p_{i+1}<q_{i+1}\),而后者可以转化为长度为 \(n-i\) 的排列 \(p',q'\) 满足 \(p'_1<q'_1\) 的方案数乘上 \(n^{\underline{i}}\)。因此,我们只需要对于每个 \(i\in[1,n]\) 计算长度为 \(i\) 的排列 \(p,q\) 满足 \(p_1<q_1\) 且 \(p\) 的逆序对个数大于 \(q\) 的方案数。
首先,我们可以枚举 \(p_1\) 和 \(q_1\),这样可以消除字典序的限制。它们对逆序对的贡献就分别为 \(p_1-1\) 和 \(q_1-1\)。如果再枚举 \(q_{2\sim n}\) 的逆序对个数 \(y\),那么符合限制的 \(p_{2\sim n}\) 的逆序对个数 \(x\) 应该满足 \(x+p_1-1>y+q_1-1\)。即 \(x>y+q_1-p_1\)。
根据上面的要求,我们设计 DP:设 \(f_{i,j}\) 为长度为 \(i\),逆序对数量为 \(j\) 的排列个数。转移方程很简单,因为从 \(i-1\to i\) 时只需要考虑 \(i\) 放在哪里:如果它放在倒数第 \(k\) 位,那么它对逆序对个数的贡献就是 \(k-1\)。因此转移方程为 \(f_{i,j}=\sum_{k=\max(0,j-i+1)}^jf_{i-1,k}\),显然可以前缀和优化到 \(n^3\)。
求出 \(f\) 后可以计算答案长度为排列长度为 \(n\) 时的答案了:记 \(s_{i,j}=\sum_{k=1}^j f_{i,k}\),\(m=\binom{n-1}{2}\),则答案为 \(\sum_{p_1=1}^{n-1}\sum_{q_1=p_1+1}^n\sum_{y=0}^{m-(q_1-p_1)}f_{n,y}\times(s_{n,m}-s_{n,y+q_1-p_1})\)。该部分时间复杂度为 \(n^4\),则总时间复杂度 \(n^5\),显然无法承受。
注意到我们不关系 \(p_1,q_1\) 的具体值,只关心 \(q_1-p_1\),因此可以枚举 \(d=q_1-p_1\),那么使 \(q_1-p_1=d\) 的 \(q_1,p_1\) 一共有 \(n-d\) 种情况。上述柿子变为 \(\sum_{d=1}^{n-1}\sum_{y=0}^{m-d}f_{n,y}\times (s_{n,m}-s_{n,y+d})\times (n-d)\)。总时间复杂度为 \(n^4\),还是无法承受。
那么继续拆柿子!此时我们只枚举 \(y\) 对于特定的 \(y\),\(f_{n,y}s_{n,m}(n-d)\) 显然可以把与 \(d\) 无关的 \(f_{n,y}s_{n,m}\) 用乘法分配律提出,那么因为 \(d\) 的上界为 \(t=\min(i-1,m-y)\),所以 \(\sum_{d=1}^t(n-d)\) 显然可以用等差数列求和公式快速求出,即为 \(\frac{(2n-1-t)t}{2}\)。
剩下来的 \(-f_{n,y}s_{n,y+d}(n-d)\) 似乎有些棘手。没关系,先把与 \(d\) 无关的 \(-f_{n,y}\) 提出,注意到 \(s_{n,y+d}(n-d)\) 中的 \(s_{n,y+d}\) 随着 \(d\) 的递增,其前面的系数是递减的。老套路了:把 \(n-d\) 拆成 \((n+y)-(y+d)\)。\(-s_{n,y+d}(y+d)\) 显然可以前缀和 \(sk_{n,j}=-\sum_{k=1}^js_{n,k}\times k\) 预处理出来;\(s_{n,y+d}(n-y)\) 把 \(n-y\) 提出来,预处理 \(s\) 的前缀和即可。
时间复杂度 \(n^3\)。代码中 \(y\) 的枚举上界是 \(m-d-1\) 而不是 \(m-d\),因为 \(y=m-d\) 时 \(s_{n,m}-s_{n,y+d}=s_{n,m}-s_{n,m}=0\),对答案无影响。代码中的 \(r\) 即为计算 \(-f_{n,y}s_{n,y+d}(n-d)\) 时 \(y+d\) 的上界。
#include <bits/stdc++.h>
using namespace std;
const int N=505;
int n,mod,ans,f[N][N*N/2],s[N][N*N/2],pp[N*N/2],ss[N*N/2];
int main(){
cin>>n>>mod,f[1][0]=s[1][0]=s[1][1]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=i*(i-1)/2;j++){
f[i][j]=(s[i-1][j]-(j<i?0:s[i-1][j-i])+mod)%mod;
s[i][j]=((j?s[i][j-1]:0)+f[i][j])%mod;
} ans=1ll*ans*i%mod;
for(int j=i*(i-1)/2+1;j<=i*(i+1)/2;j++)s[i][j]=s[i][j-1];
if(i<=3)continue;
int lim=(i-1)*(i-2)/2;
for(int j=0;j<=lim;j++){
tmpp[j]=((j==0?0:tmpp[j-1])-s[i-1][j]*j%mod+mod)%mod,
tmps[j]=((j==0?0:tmps[j-1])+s[i-1][j])%mod;
}
for(int j=0;j+2<=lim;j++){
int times=min(lim-j-1,i-1),c=(i-1+i-times)*times/2,r=min(lim-1,j+i-1);
ans=(ans+1ll*f[i-1][j]%mod*s[i-1][lim]%mod*c)%mod;
ans=(ans-1ll*f[i-1][j]*(pp[r]-pp[j]+(ss[r]-ss[j])*(i+j)%mod)%mod+mod)%mod;
}
}
cout<<ans<<endl;
return 0;
}
CF1542E2 Abnormal Permutation Pairs (hard version)的更多相关文章
- Codeforces 1542E2 - Abnormal Permutation Pairs (hard version)(DP)
upd on 2021.7.7:修了个 typo Codeforces 题目传送门 & 洛谷题目传送门 首先考虑怎样处理"字典序小"这个问题,按照字典序比大小的套路,我们可 ...
- 洛谷 P5853 - [USACO19DEC]Tree Depth P(生成函数+背包)
洛谷题面传送门 神仙题. 首先考虑一个点的深度是什么,注意到对于笛卡尔树而言直接从序列的角度计算一个点的深度是不容易的,因为这样会牵扯到序列中多个元素,需要 fixed 的东西太多,计算起来太复杂了. ...
- DP 做题记录 II.
里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...
- LeetCode解题报告—— Swap Nodes in Pairs & Divide Two Integers & Next Permutation
1. Swap Nodes in Pairs Given a linked list, swap every two adjacent nodes and return its head. For e ...
- error: checker javascript/jshint: can’t parse version string (abnormal termination?)”
vim 安装插件(k-vim方法 )好后 编辑js文件提示错误 可能是nodejs环境没搭建好 或者版本有误 用nvm安装node 后 需要 source ~/.bashrc 或者重新开一个终端 再运 ...
- one recursive approach for 3, hdu 1016 (with an improved version) , permutations, N-Queens puzzle 分类: hdoj 2015-07-19 16:49 86人阅读 评论(0) 收藏
one recursive approach to solve hdu 1016, list all permutations, solve N-Queens puzzle. reference: t ...
- Create side-by-side stereo pairs in the Unity game engine
Create side-by-side stereo pairs in the Unity game engine Paul BourkeDecember 2008 Sample Island pro ...
- ePass1000 Full ActiveX Control Reference Manual Version 2.0
ePass1000 Full ActiveX Control Reference Manual Version 2.0 Error Code Value Return Status Descripti ...
- hdu 2583 permutation
permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
随机推荐
- 【UE4】GAMES101 图形学作业0:矩阵初识
作业描述 给定一个点P=(2,1), 将该点绕原点先逆时针旋转45◦,再平移(1,2), 计算出变换后点的坐标(要求用齐次坐标进行计算). UE4 知识点 主要矩阵 FMatrix FBasisVec ...
- seata代码控制回滚和临时挂起分布式事物
seata代码控制回滚和临时挂起分布式事物 一.说明 二.功能实现 1.手动回滚分布式事物 2.临时挂起分布式事物 三.完整代码 四 参考链接 一.说明 此处只是简单的记录一下,使用了 Seata后, ...
- Docker制作能够ssh连接的镜像
本类文章只作为记录使用 命令操作: #拉取Centos 7 docker pull centos:7 #运行一个镜像 docker run -tdi --privileged centos:7 ini ...
- nodejs:使用puppeteer在服务器中构建一个获取电影电视剧剧集的接口
首先我们看下数据来源: 来源于这个网站:https://z1.m1907.cn/ 可以说这个网站上能找到很多你想看的很多电影或电视剧,最重要的是很多电影电视剧在别的网站是收费的,但是在这里看是免费的, ...
- redis 的单机安装
redis 单机安装 参考文档地址:https://www.cnblogs.com/withfeel/p/10655994.html 1,下载redis,下载地址http://download.red ...
- Kioskcached(1)之 Memcached & Redis & Kioskcached 性能测试对比
前言:本文仅仅是作者自己在学习过程中的一次实验而已,或许因为各种因素会导致实验结果与你之前的认知不太一样,因此请你带着批判的眼光看待本文(本文不具有实际环境的参考性). 一:测试目的 在了解了一些No ...
- Loadrunner12的下载和安装
工作需要,学起来 第一部分:安装 一.在惠普官网下载Loadrunner12安装包.下载下来将会有四个安装包. HP_LoadRunner_12.02_Community_Edition_Additi ...
- git diff 比较差异
说明 以下命令可以不指定 <filename>,表示对全部文件操作. 命令涉及和 Git本地仓库对比的,均可指定 commit 的版本. HEAD 最近一次 commit HEAD^ 上次 ...
- LOTO示波器实测——光照强度传感器
loto最近推出了很多的周边传感器模块的实测案例,本文介绍和演示LOTO示波器实测光照强度传感器的使用. 下图就是主角感光模块,可以用来测量光照强度. 这个模块也很简单,只有3个引脚,一个电源,3.3 ...
- updatexml和extractvalue函数报错注入
updatexml()函数报错注入 updatexml (XML_document, XPath_string, new_value); 第一个参数:XML_document是String格式,为XM ...