C. Famil Door and Brackets
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

As Famil Door’s birthday is coming, some of his friends (like Gabi) decided to buy a present for him. His friends are going to buy a string consisted of round brackets since Famil Door loves string of brackets of length n more than any other strings!

The sequence of round brackets is called valid if and only if:

  1. the total number of opening brackets is equal to the total number of closing brackets;
  2. for any prefix of the sequence, the number of opening brackets is greater or equal than the number of closing brackets.

Gabi bought a string s of length m (m ≤ n) and want to complete it to obtain a valid sequence of brackets of length n. He is going to pick some strings p and q consisting of round brackets and merge them in a string p + s + q, that is add the string p at the beginning of the string s and string q at the end of the string s.

Now he wonders, how many pairs of strings p and q exists, such that the string p + s + q is a valid sequence of round brackets. As this number may be pretty large, he wants to calculate it modulo 109 + 7.

Input

First line contains n and m (1 ≤ m ≤ n ≤ 100 000, n - m ≤ 2000) — the desired length of the string and the length of the string bought by Gabi, respectively.

The second line contains string s of length m consisting of characters '(' and ')' only.

Output

Print the number of pairs of string p and q such that p + s + q is a valid sequence of round brackets modulo 109 + 7.

Examples
input
4 1
(
output
4
input
4 4
(())
output
1
input
4 3
(((
output
0
Note

In the first sample there are four different valid pairs:

  1. p = "(", q = "))"
  2. p = "()", q = ")"
  3. p = "", q = "())"
  4. p = "", q = ")()"

In the second sample the only way to obtain a desired string is choose empty p and q.

In the third sample there is no way to get a valid sequence of brackets.

思路:dp;

dp[i][j]表示前i个括号,开口向右减开口向左的值SS。方程:dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1].在i的时候当前选向左开口或向右开口。

可以知道dp[0][0]=1;由于n-m<=2000;所以枚举p,因为最后要平衡所以q也可以知道了,并且q的取值也就是前面的dp,因为要和前面匹配,前面p+s结束时必定有向右的

括号数大于向左的括号数,所以在剩下的q只要取向左的括号数数-向右的括号数,与前面的匹配中和就行了,也就是将前面的dp看成在i时开口向右减开口向左的值SS,所以套用前面的dp就行了。  最后sum=((sum)%N+(dp[i][j]*dp[cc][ans])%N)%N;

 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<queue>
5 #include<stdlib.h>
6 #include<string.h>
7 using namespace std;
8 typedef long long LL;
9 LL dp[2205][2205];
10 char str[100005];
11 int QZ[100005];
12 const LL N=1e9+7;
13 int main(void)
14 {
15 LL i,j,k,p,q;
16 dp[0][0]=1;
17 for(i=1;i<=2200;i++)
18 {
19 for(j=0;j<=i;j++)
20 {
21 if(j>0)
22 {
23 dp[i][j]=(dp[i][j]+dp[i-1][j-1])%N;
24 }
25 dp[i][j]=(dp[i][j]+dp[i-1][j+1])%N;
26 }
27 }
28 while(scanf("%I64d %I64d",&p,&q)!=EOF)
29 {memset(QZ,0,sizeof(QZ));
30 scanf("%s",str);LL meq=1e8;LL maxx;
31 for(i=0;i<q;i++)
32 {
33 if(str[i]=='(')
34 {
35 QZ[i+1]=QZ[i]+1;
36 }
37 else
38 {
39 QZ[i+1]=QZ[i]-1;
40 }
41 if(QZ[i+1]<meq)
42 {
43 meq=QZ[i+1];
44 }
45 }LL sum=0;if(meq<=0){maxx=-meq;}
46 else maxx=0;
47 for(i=maxx;i<=2000;i++)
48 {
49 for(j=maxx;j<=i;j++)
50 {
51 LL cc=p-q-i;
52 LL ans=j+QZ[q];
53 if(cc>=0&&ans<=cc)
54 {
55 sum=((sum)%N+(dp[i][j]*dp[cc][ans])%N)%N;
56 }
57 }
58 }
59 printf("%I64d\n",sum);
60 }
61 return 0;
62 }

Codeforces629 C. Famil Door and Brackets的更多相关文章

  1. 【Codeforces629C】Famil Door and Brackets [DP]

    Famil Door and Brackets Time Limit: 20 Sec  Memory Limit: 512 MB Description Input Output Sample Inp ...

  2. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  3. codeforces 629C Famil Door and Brackets (dp + 枚举)

    题目链接: codeforces 629C Famil Door and Brackets 题目描述: 给出完整的括号序列长度n,现在给出一个序列s长度为m.枚举串p,q,使得p+s+q是合法的括号串 ...

  4. 【23.24%】【codeforces 629C】Famil Door and Brackets

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  5. codeforces629C Famil Door and Brackets (dp)

    As Famil Door's birthday is coming, some of his friends (like Gabi) decided to buy a present for him ...

  6. Codeforces 629C Famil Door and Brackets(DP)

    题目大概说给一个长m的括号序列s,要在其前面和后面添加括号使其变为合法的长度n的括号序列,p+s+q,问有几种方式.(合法的括号序列当且仅当左括号总数等于右括号总数且任何一个前缀左括号数大于等于右括号 ...

  7. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets

    题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...

  8. Codeforces 629C Famil Door and Brackets DP

    题意:给你一个由括号组成的字符串,长度为m,现在希望获得一个长度为n(全由括号组成)的字符串,0<=n-m<=2000 这个长度为n的字符串要求有两个性质:1:就是任意前缀,左括号数量大于 ...

  9. codeforces629C Famil Door and Brackets (dp)

    题意:给你一个长度为n的括号匹配串(不一定恰好匹配),让你在这个串的前面加p串和后面加上q串,使得这个括号串平衡(平衡的含义是对于任意位置的括号前缀和大于等于0,且最后的前缀和为0). 思路:枚举这个 ...

随机推荐

  1. vector去重--unique

    具体实现见中间源码 function template <algorithm> std::unique equality (1) template <class ForwardIte ...

  2. 修复UE4编辑器,ClearLog操作导致的崩溃

    UE4 4.24.3版本,编辑器Output Log窗口中,右键--Clear Log操作很大概率会导致编辑器奔溃:解决办法: 相关文件: Engine\Source\Developer\Output ...

  3. 解决UE4项目编辑器启动时出现LogLinker: Warning: Failed to load '/Game/FirstPersonBP/FirstPersonOverview': Can't find file.

    UE4版本:4.24.3源码编译版本 Windows10 + VS2019环境 LogLinker: Warning: Failed to load '/Game/FirstPersonBP/Firs ...

  4. C#点击按钮添加标签

    <asp:Button ID="button1" runat="server" Text="创建" onclick="But ...

  5. A Child's History of England.31

    The English in general were on King Henry's side, though many of the Normans were on Robert's. But t ...

  6. Hadoop fs.copyToLocalFile错误

    fs.copyToLocalFile(new Path("/study1/1.txt"), new Path("C:/Users/Administrator/Deskto ...

  7. 3.5 Rust Generic Types, Traits, and Lifetimes

    Every programming language has tools for effectively handling the duplication of concepts. In Rust, ...

  8. Spring整合Ibatis之SqlMapClientDaoSupport

    前言 HibernateDaoSupport   SqlMapClientDaoSupport . 其实就作用而言两者是一样的,都是为提供DAO支持,为访问数据库提供支持. 只不过HibernateD ...

  9. 【Python】【Basic】【数据类型】基本数据类型

    1.数字 int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1,即-2147483648-2147483647 在64位系统上,整数的位数为64位,取值范围为-2 ...

  10. sf02_选择排序算法Java Python rust 实现

    Java 实现 package common; public class SimpleArithmetic { /** * 选择排序 * 输入整形数组:a[n] [4.5.3.7] * 1. 取数组编 ...