Improving Adversarial Robustness via Channel-Wise Activation Suppressing
概
这两篇论文发现natural和adversarial样本在激活层的大小和分布有显著的不同.
主要内容


如上两图所示, 对抗样本的magnitude相较于干净样本要普遍大一些, 重要性的分布相较于干净分布更趋于均匀分布.
所以可以认为, 倘若我们能够恢复正常的大小以及回归正常的重要性指标, 那么就能够提高网络鲁棒性.
注: 上面的重要性分布是这么计算的: 对于固定的类, 计算每个channel对于判别为该类的贡献度是否超越一个阈值, 以统计的综合频率为最后的重要性.
对于每一个block (比如resnet中的block), 在最后的输出部分辅以重加权, 使得重要的激活层能够更加突出.
重加权是通过新的全连接层实现的, 假设特征图大小为
\]
其中\(K\)为channels的数目, 首先通过GAP得到:
\]
再通过全连接层\(M^l = [M_1^l, \cdots, M_C^l] \in \mathbb{R}^{K \times C}\)重加权
\left \{
\begin{array}{ll}
f^l \otimes M_y^l, & \text{training}, \\
f^l \otimes M_{\hat{y}}^l, & \text{test}.
\end{array}
\right .
\]
其中训练时, \(y\)就是样本标签, 而测试时,
\]
即预测值.
所以, 显然为了让\(M_y\)能够与样本标签紧密联系, 在训练的时候, 需要额外最小化一个交叉熵损失:
\]
这里\(x'\)表示对抗样本.
CIFS的思路是类似的, 这里不多赘述了.
代码
Improving Adversarial Robustness via Channel-Wise Activation Suppressing的更多相关文章
- Improving Adversarial Robustness Using Proxy Distributions
目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...
- IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...
- Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...
- Second Order Optimization for Adversarial Robustness and Interpretability
目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...
- Certified Adversarial Robustness via Randomized Smoothing
目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...
- Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...
- Generative Adversarial Networks overview(1)
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...
- RCAN——Image Super-Resolution Using Very Deep Residual Channel Attention Networks
1. 摘要 在图像超分辨领域,卷积神经网络的深度非常重要,但过深的网络却难以训练.低分辨率的输入以及特征包含丰富的低频信息,但却在通道间被平等对待,因此阻碍了网络的表示能力. 为了解决上述问题,作者提 ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
随机推荐
- Notepad++【远程操作linux文件】
目录 目的 预期效果 操作步骤 1.打开插件 2.安装NppFTP 3.连接远程主机 注意 目的 通过Notepad++远程登录linux主机,修改配置文件 预期效果 在Notepad++上登录lin ...
- 零基础学习java------31---------共享单车案例,html快速入门(常见标签,get和post的区别)
一 .单车案例 二. HTML快速入门 红字表示要掌握的内容 超文本标记语言,此处的标记指的即是关键字,其用处是用来写页面(展示数据). 语法:(1)./当前目录:../ 父级目录 (2)注释符号: ...
- 容器之分类与各种测试(三)——slist的用法
slist和forward_list的不同之处在于其所在的库 使用slist需要包含 #include<ext\list> 而使用forward_list则需要包含 #include< ...
- webservice--常用注解
定义说明书的显示方法1.@WebService(serviceName="PojoService", portName="PojoPort", name=&qu ...
- Dubbo中CompletableFuture异步调用
使用Future实现异步调用,对于无需获取返回值的操作来说不存在问题,但消费者若需要获取到最终的异步执行结果,则会出现问题:消费者在使用Future的get()方法获取返回值时被阻塞.为了解决这个问题 ...
- 【Linux】【Services】【Project】Haproxy Keepalived Postfix实现邮件网关Cluster
1. 简介: 1.1. 背景:公司使用exchange服务器作为邮件服务器,但是使用Postfix作为邮件网关实现病毒检测,内容过滤,反垃圾邮件等功能.原来的架构非常简单,只有两台机器,一个负责进公司 ...
- Tableau如何绘制双柱折线组合图
一.数据准备如下所示 二.将日期拖拽至列,销售额拖拽至行,结果如下所示 三.右键日期排序-选择手动排序 四.将指标拖拽至标记卡上 五.创建计算字段增长率 SUM(IF YEAR(日期)=2017 th ...
- [BUUCTF]PWN——pwnable_start
pwnable_start 附件 步骤: 例行检查,32位程序,什么保护都没开,首先想到的是ret2shellcode的方法 本地试运行一下,看看程序大概的情况 32位ida载入,没法f5,好在汇编不 ...
- HGAME2021 week2 pwn writeup
week2一共有4道pwn题 killerqueen 有格式化字符串漏洞,题不算难,但是故事情节真实让人摸不着头脑,但是仔细分析分析,理清楚逻辑就可以做了. 第一次choose1的时候,可以输入0,泄 ...
- 再识ret2syscall
当初学rop学到的ret2syscall,对int 0x80中断了解还不是很深,这次又复习了一遍.虽然很简单,但是还是学到了新东西.那么我们就从ret2syscall开始吧. IDA一打开的时候,就看 ...