一、分布式ID概念

说起ID,特性就是唯一,在人的世界里,ID就是身份证,是每个人的唯一的身份标识。在复杂的分布式系统中,往往也需要对大量的数据和消息进行唯一标识。举个例子,数据库的ID字段在单体的情况下可以使用自增来作为ID,但是对数据分库分表后一定需要一个唯一的ID来标识一条数据,这个ID就是分布式ID。对于分布式ID而言,也需要具备分布式系统的特点:高并发,高可用,高性能等特点。

二、分布式ID实现方案

下表为一些常用方案对比:

描述 优点 缺点
UUID UUID是通用唯一标识码的缩写,其目的是上分布式系统中的所有元素都有唯一的辨识信息,而不需要通过中央控制器来指定唯一标识。 1. 降低全局节点的压力,使得主键生成速度更快;2. 生成的主键全局唯一;3. 跨服务器合并数据方便 1. UUID占用16个字符,空间占用较多;2. 不是递增有序的数字,数据写入IO随机性很大,且索引效率下降
数据库主键自增 MySQL数据库设置主键且主键自动增长 1. INT和BIGINT类型占用空间较小;2. 主键自动增长,IO写入连续性好;3. 数字类型查询速度优于字符串 1. 并发性能不高,受限于数据库性能;2. 分库分表,需要改造,复杂;3. 自增:数据量泄露
Redis自增 Redis计数器,原子性自增 使用内存,并发性能好 1. 数据丢失;2. 自增:数据量泄露
雪花算法(snowflake) 大名鼎鼎的雪花算法,分布式ID的经典解决方案 1. 不依赖外部组件;2. 性能好 时钟回拨

目前流行的分布式ID解决方案有两种:号段模式雪花算法

号段模式依赖于数据库,但是区别于数据库主键自增的模式。假设100为一个号段100,200,300,每取一次可以获得100个ID,性能显著提高。

雪花算法是由符号位+时间戳+工作机器id+序列号组成的,如图所示:

符号位为0,0表示正数,ID为正数。

时间戳位不用多说,用来存放时间戳,单位是ms。

工作机器id位用来存放机器的id,通常分为5个区域位+5个服务器标识位。

序号位是自增。

  • 雪花算法能存放多少数据?

    时间范围:2^41 / (3652460601000) = 69年

    工作进程范围:2^10 = 1024

    序列号范围:2^12 = 4096,表示1ms可以生成4096个ID。

根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。下面是推特版的Snowflake算法:

public class SnowFlake {

    /**
* 起始的时间戳
*/
private final static long START_STMP = 1480166465631L; /**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATACENTER_BIT = 5;//数据中心占用的位数 /**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT); /**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT; private long datacenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastStmp = -1L;//上一次时间戳 public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
} /**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
} if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
} lastStmp = currStmp; return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
| datacenterId << DATACENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
} private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
} private long getNewstmp() {
return System.currentTimeMillis();
} public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3); for (int i = 0; i < (1 << 12); i++) {
System.out.println(snowFlake.nextId());
} }
}

三、分布式ID开源组件

3.1 如何选择开源组件

选择开源组件首先需要看软件特性是否满足需求,主要包括兼容性和扩展性。

其次需要看目前的技术能力,根据目前自己或者团队的技术栈和技术能力,能否可以平滑的使用。

第三,要看开源组件的社区,主要关注更新是否频繁、项目是否有人维护、遇到坑的时候可以取得联系寻求帮助、是否在业内被广泛使用等。

3.2 美团Leaf

Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”Leaf具备高可靠、低延迟、全局唯一等特点。目前已经广泛应用于美团金融、美团外卖、美团酒旅等多个部门。具体的技术细节,可参考美团技术博客的一篇文章:《Leaf美团分布式ID生成服务》。目前,Leaf项目已经在Github上开源:https://github.com/Meituan-Dianping/Leaf。Leaf在特性如下:

  1. 全局唯一,绝对不会出现重复的ID,且ID整体趋势递增。
  2. 高可用,服务完全基于分布式架构,即使MySQL宕机,也能容忍一段时间的数据库不可用。
  3. 高并发低延时,在CentOS 4C8G的虚拟机上,远程调用QPS可达5W+,TP99在1ms内。
  4. 接入简单,直接通过公司RPC服务或者HTTP调用即可接入。

3.3 百度UidGenerator

UidGenerator百度开源的一款基于Snowflake算法的分布式高性能唯一ID生成器。采用官网的一段描述:UidGenerator以组件形式工作在应用项目中, 支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境下实例自动重启、漂移等场景。 在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。UidGenerator的GitHub地址:https://github.com/baidu/uid-generator

3.4 开源组件对比

百度UidGenerator是Java语言的;最近一次提交记录是两年前,基本无人维护;只支持雪花算法。

美团Leaf也是Java语言的;最近维护为2020年;支持号段模式和雪花算法。

综上理论和两款开源组件的对比,还是美团Leaf稍胜一筹。

你还知道哪些常用的分布式ID解决方案呢?

最常用的分布式ID解决方案,你知道几个的更多相关文章

  1. 分布式ID解决方案

    开发十年,就只剩下这套Java开发体系了 >>>   在游戏开发中,我们使用分布式ID.有很多优点 便于合服 便于ID管理 等等 一.单服各自ID系统的弊端 1. 列如合服 在游戏上 ...

  2. spring cloud微服务快速教程之(十二) 分布式ID解决方案(mybatis-plus篇)

    0-前言 分布式系统中,分布式ID是个必须解决的问题点: 雪花算法是个好方式,不过不能直接使用,因为如果直接使用的话,需要配置每个实例workerId和datacenterId,在微服务中,实例一般动 ...

  3. 常用的分布式ID生成器

    为何需要分布式ID生成器 **本人博客网站 **IT小神 www.itxiaoshen.com **拿我们系统常用Mysql数据库来说,在之前的单体架构基本是单库结构,每个业务表的ID一般从1增,通过 ...

  4. 分布式 ID 解决方案之美团 Leaf

    分布式 ID 在庞大复杂的分布式系统中,通常需要对海量数据进行唯一标识,随着数据日渐增长,对数据分库分表以后需要有一个唯一 ID 来标识一条数据,而数据库的自增 ID 显然不能满足需求,此时就需要有一 ...

  5. 图解Janusgraph系列-分布式id生成策略分析

    JanusGraph - 分布式id的生成策略 大家好,我是洋仔,JanusGraph图解系列文章,实时更新~ 本次更新时间:2020-9-1 文章为作者跟踪源码和查看官方文档整理,如有任何问题,请联 ...

  6. 分布式ID生成策略之ZK

    import org.apache.curator.framework.CuratorFramework; import org.apache.curator.framework.CuratorFra ...

  7. 就这?分布式 ID 发号器实战

    分布式 ID 需要满足的条件: 全局唯一:这是最基本的要求,必须保证 ID 是全局唯一的. 高性能:低延时,不能因为一个小小的 ID 生成,影响整个业务响应速度. 高可用:无限接近于100%的可用性. ...

  8. 分布式ID生成器的解决方案总结

    在互联网的业务系统中,涉及到各种各样的ID,如在支付系统中就会有支付ID.退款ID等.那一般生成ID都有哪些解决方案呢?特别是在复杂的分布式系统业务场景中,我们应该采用哪种适合自己的解决方案是十分重要 ...

  9. 分布式ID生成器解决方案

    一.分布式系统带来ID生成挑战 在复杂的系统中,往往需要对大量的数据如订单,账户进行标识,以一个有意义的有序的序列号来作为全局唯一的ID; 而分布式系统中我们对ID生成器要求又有哪些呢? 全局唯一性: ...

随机推荐

  1. Java_面向对象三大特征

    面向对象特征 面向对象三大特征: 继承, 封装, 多态 继承 继承: 子类可以从父类继承属性和方法 对外公开某些属性和方法 要点(eclipse中Ctrl+T查看继承结构) 1.父类也称超类, 基类, ...

  2. 三分钟快速解析GraphQL基本工作思路!

    欢迎阅读 本文会通过实际场景介绍一下 GraphQL,目的是让你快速了解 GraphQL 是什么,以及基本工作思路,不包含实际用法,所以阅读很轻松. 一.GraphQL 是什么? GraphQL 是后 ...

  3. SSH个人小结

    初学SSH的一些总结,主要来源于谷歌搜索和鸟叔的教程http://cn.linux.vbird.org/linux_server/0310telnetssh_2.php 以及阮一峰的博客http:// ...

  4. day90:luffy:路飞项目前端部署

    目录 1.域名备案 2.域名解析 3.设置安全组 4.部署架构图 5.一些准备工作 6.docker 7.把前端项目通过nginx容器来运行 1.域名备案 腾讯云先要进行域名实名认证,实名认证三天后才 ...

  5. 11Linux之软件包管理

    11Linux之软件包管理 目录 11Linux之软件包管理 11 软件包管理 11.1 软件包介绍 11.1.1 编程语言分类 11.1.2 三种安装包 11.2 rpm包管理 11.2.1 rpm ...

  6. 重构克隆rbd的数据

    前言 之前写过一篇重构rbd的元数据的文章,讲的是如果rbd的元数据丢失了,数据还在的时候怎么恢复相关的元数据,但是实际使用的场景是,集群可能崩溃了,数据还在,osd无法拉起来,数据又很重要,需要把数 ...

  7. python分类

    python是一种动态解释性的强类型语言. python下分几个类别,分别是cpython,jypython,ironpython,pypy等等,这些属于不同的解释器,但编写规范只有一个就是pytho ...

  8. Java web 自动备份数据库和log4j日志

    利用监听自动备份 web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns: ...

  9. Linux下查询外网IP的办法。

    Curl 纯文本格式输出:curl icanhazip.comcurl ifconfig.mecurl curlmyip.comcurl ip.appspot.comcurl ipinfo.io/ip ...

  10. java中高级面试利器(boot,cloud,vue前后端提升)

    https://github.com/Snailclimb/JavaGuide   Java知识大全(面试) https://github.com/doocs/advanced-java  Java工 ...