sklearn--模型的评价
sklearn.metrics
1.MSE(均方误差)和RMSE(均方根误差),以及score()
lr.score(test_x,test_y)#越接近1越好,负的很差
from sklearn.metrics import mean_squared_error
mean_squared_error(test_y,lr.predict(test_x))#mse
np.sqrt(mean_squared_error(test_y,lr.predict(test_x)))
from sklearn.metrics import accuracy_score
print(accuracy_score(predict_results, target_test))
2.混淆矩阵
混淆矩阵的每一列代表了预测类别 ,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别,每一行的数据总数表示该类别的数据实例的数目。每一列中的数值表示真实数据被预测为该类的数目:如下图,第一行第一列中的43表示有43个实际归属第一类的实例被预测为第一类,同理,第二行第一列的2表示有2个实际归属为第二类的实例被错误预测为第一类。
cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)
import seaborn as sns
sns.heatmap(cnf_matrix,cmap="Blues",annot=True,fmt='d',square=True)
plt.ylabel('True Label')
plt.xlabel('pre Label')
plt.title('Confusion matrix')

学习曲线
通过观察训练集和测试集的得分来看两个曲线的靠近程度,如果是两个曲线的方差太大,测试集差训练集好,则说明是过拟合,如果两个曲线方差不太大,两个的训练的效果都不好,这就说明是欠拟合
from sklearn.model_selection import learning_curve #绘制学习曲线,以确定模型的状况
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
train_sizes=np.linspace(.1, 1.0, 5)):
"""
画出data在某模型上的learning curve.
参数解释
----------
estimator : 你用的分类器。
title : 表格的标题。
X : 输入的feature,numpy类型
y : 输入的target vector
ylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点
cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份)
"""
plt.figure()
train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=5, n_jobs=1, train_sizes=train_sizes,scoring='neg_mean_squared_error')
train_scores=np.sqrt(-train_scores)
test_scores=np.sqrt(-test_scores)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score")
plt.xlabel("Training examples")
plt.ylabel("Score")
plt.legend(loc="best")
plt.grid("on")
if ylim:
plt.ylim(ylim)
plt.title(title)
plt.show() #少样本的情况情况下绘出学习曲线
sklearn--模型的评价的更多相关文章
- sklearn 模型选择和评估
一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.c ...
- sklearn模型保存与加载
sklearn模型保存与加载 sklearn模型的保存和加载API 线性回归的模型保存加载案例 保存模型 sklearn模型的保存和加载API from sklearn.externals impor ...
- python sklearn模型的保存
使用python的机器学习包sklearn的时候,如果训练集是固定的,我们往往想要将一次训练的模型结果保存起来,以便下一次使用,这样能够避免每次运行时都要重新训练模型时的麻烦. 在python里面,有 ...
- sklearn模型的属性与功能-【老鱼学sklearn】
本节主要讲述模型中的各种属性及其含义. 例如上个博文中,我们有用线性回归模型来拟合房价. # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit( ...
- sklearn模型保存
使用sklearn训练完模型之后,只有将模型持久化到硬盘上,才能方便下次直接使用. 第一种方式:使用pickle >>> from sklearn import svm >&g ...
- sklearn 模型评估
原文链接 http://d0evi1.com/sklearn/model_evaluation/ 预测值:pred 真实值:y_test #### 直接用平均值 ``` mean(pred == y_ ...
- Sklearn,TensorFlow,keras模型保存与读取
一.sklearn模型保存与读取 1.保存 from sklearn.externals import joblib from sklearn import svm X = [[0, 0], [1, ...
- sklearn中模型评估和预测
一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.c ...
- Sklearn数据集与机器学习
sklearn数据集与机器学习组成 机器学习组成:模型.策略.优化 <统计机器学习>中指出:机器学习=模型+策略+算法.其实机器学习可以表示为:Learning= Representati ...
- python进行机器学习(四)之模型验证与参数选择
一.模型验证 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 这里我们将 ...
随机推荐
- Java工程师学习指南第4部分:Java并发编程指南
本文整理了微信公众号[Java技术江湖]发表和转载过的Java并发编程相关优质文章,想看到更多Java技术文章,就赶紧关注本公众号吧吧. [纯干货]Java 并发进阶常见面试题总结 [Java基本功] ...
- admin源码分析
django settings 源码分析 导入settingso模块,进入源码,会发现settings是一个 单例 LazySettings类实例化产生的一个对象,LazySettings实例化后就会 ...
- 2019-10-17 李宗盛 spss作业
开放数据库连接是为解决异构数据库之间的数据共享而产生的,现已成为Wosa cwindows开放系统体系结构主要部分和基于Windows环境的一种数据库访问接口标准ODBS被异构数据库访问提供统一接口, ...
- nssm设置solr开机启动服务
首先,下载nssm http://www.nssm.cc/download 命令 nssm install solr 然后到服务里启动solr,并设置为自动 Ctrl+Shift+Esc(说明:Esc ...
- 鼠标拖拉div宽度
先看效果 先进入页面 当鼠标停留在中间div时,鼠标变成双箭头 点击拖拉 往右边拉 往最左边拉 代码 <!DOCTYPE html> <html> <head> & ...
- odoo12安装指南
声明:本指南默认已安装好Python3和pycharm及postgresql,odoo12的源码包 一. 1.在pycharm创建一个新的项目 建议创建在虚拟环境中 2.在pycharm的控制台下检验 ...
- Docker 安装 Apache
查找Docker Hub上的httpd镜像 apache$ docker search httpd 拉取官方的镜像 docker pull httpd 使用apache镜像 创建目录apache,用于 ...
- Docker 安装 Python
查找Docker Hub上的python镜像 docker search python 拉取官方的镜像,标签为3.5 docker pull python:3.5 使用python镜像 创建目录pyt ...
- [转帖]Kafka 原理和实战
Kafka 原理和实战 https://segmentfault.com/a/1190000020120043 两个小时读完... 实在是看不完... 1.2k 次阅读 · 读完需要 101 分钟 ...
- easyUI datagrid 刷新取消加载信息 自动刷新闪屏问题
<style type="text/css"> /*-- 消除grid屏闪问题 --//*/ .datagrid-mask { opacity: 0; filter: ...