pandas DataFrame.shift()函数
pandas DataFrame.shift()函数可以把数据移动指定的位数
period参数指定移动的步幅,可以为正为负.axis指定移动的轴,1为行,0为列.
eg: 有这样一个DataFrame数据:
import pandas as pd
data1 = pd.DataFrame({
'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
'b': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
})
print data1
a b
0 0 9
1 1 8
2 2 7
3 3 6
4 4 5
5 5 4
6 6 3
7 7 2
8 8 1
9 9 0
如果想让 a和b的数据都往下移动一位:
data2 = data1.shift(axis=0)
print data2
a b
0 NaN NaN
1 0.0 9.0
2 1.0 8.0
3 2.0 7.0
4 3.0 6.0
5 4.0 5.0
6 5.0 4.0
7 6.0 3.0
8 7.0 2.0
9 8.0 1.0
如果是在行上往右移动一位:
data3 = data1.shift(axis=1)
print data3
a b
0 NaN 0.0
1 NaN 1.0
2 NaN 2.0
3 NaN 3.0
4 NaN 4.0
5 NaN 5.0
6 NaN 6.0
7 NaN 7.0
8 NaN 8.0
9 NaN 9.0
如果想往上或者往左移动,可以指定(periods=-1):
data4 = data1.shift(periods=-1, axis=0)
print data4
a b
0 1.0 8.0
1 2.0 7.0
2 3.0 6.0
3 4.0 5.0
4 5.0 4.0
5 6.0 3.0
6 7.0 2.0
7 8.0 1.0
8 9.0 0.0
9 NaN NaN
一个例子:
这里有一组某车站各个小时的总进站人数和总出站人数的数据:
entries_and_exits = pd.DataFrame({
'ENTRIESn': [3144312, 3144335, 3144353, 3144424, 3144594,
3144808, 3144895, 3144905, 3144941, 3145094],
'EXITSn': [1088151, 1088159, 1088177, 1088231, 1088275,
1088317, 1088328, 1088331, 1088420, 1088753]
})
要求计算每个小时该车站进出站人数
思路: 把第n+1小时的总人数-第n小时的总人数,就是这个小时里的进出站人数
entries_and_exits_hourly = entries_and_exits - entries_and_exits.shift(axis=0)print(entries_and_exits_hourly.fillna(0)) #最后用0来填补NaN
ENTRIESn EXITSn
0 0.0 0.0
1 23.0 8.0
2 18.0 18.0
3 71.0 54.0
4 170.0 44.0
5 214.0 42.0
6 87.0 11.0
7 10.0 3.0
8 36.0 89.0
9 153.0 333.0
pandas DataFrame.shift()函数的更多相关文章
- pandas DataFrame apply()函数(1)
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 app ...
- pandas DataFrame apply()函数(2)
上一篇pandas DataFrame apply()函数(1)说了如何通过apply函数对DataFrame进行转换,得到一个新的DataFrame. 这篇介绍DataFrame apply()函数 ...
- pandas DataFrame applymap()函数
pandas DataFrame的 applymap() 函数可以对DataFrame里的每个值进行处理,然后返回一个新的DataFrame: import pandas as pd df = pd. ...
- [Python Study Notes]pandas.DataFrame.plot()函数绘图
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- python重要的第三方库pandas模块常用函数解析之DataFrame
pandas模块常用函数解析之DataFrame 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器 ...
- Lesson4——Pandas DataFrame结构
pandas目录 思维导图 1 简介 DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一. 2 认识DataFrame结构 Data ...
- pandas.DataFrame的pivot()和unstack()实现行转列
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings impor ...
- 把pandas dataframe转为list方法
把pandas dataframe转为list方法 先用numpy的 array() 转为ndarray类型,再用tolist()函数转为list
- Pandas Dataframe增、删、改、查、去重、抽样基本操作
总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快 ...
随机推荐
- HDU 1159 Common Subsequence 【最长公共子序列】模板题
题目链接:https://vjudge.net/contest/124428#problem/A 题目大意:给出两个字符串,求其最长公共子序列的长度. 最长公共子序列算法详解:https://blog ...
- windows下redis安装和配置
windows下redis安装和配置 redis介绍 Redis是一个开源,高级的键值存储和一个适用的解决方案,用于构建高性能,可扩展的Web应用程序. Redis有三个主要特点,使它优越于其它键值数 ...
- 003.HAProxy ACL规则的智能负载均衡
一 简介 HAProxy可以工作在第七层模型,可通过ACL规则实现基于HAProxy的智能负载均衡系统,HAProxy通过ACL规则完成以下两种主要功能: 通过ACL规则检查客户端请求是否合法,如果符 ...
- Flutter开发环境(Window)配置及踩坑记录
Flutter 是 Google 用以帮助开发者在 iOS 和 Android 两个平台开发高质量原生 UI 的移动 SDK.Flutter 兼容现有的代码,免费且开源,在全球开发者中广泛被使用. F ...
- win7查看其它工作组 win7 所有工作组
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha win7 所有工作组 ==== win7 网络 工作组 查找 自身有问题. 多刷新几 ...
- 10.16 NOIP模拟赛
目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...
- SpringMVC页面传值
public ModelAndView query(){ ModelAndView modelAndView = new ModelAndView(); List list = new ArrayLi ...
- CocosCreator的Sprite的更换
先上图,左侧是运行的效果, cc.Class({ extends: cc.Component, /* * cocos creator动态更换纹理 *方法一,预先在编辑器里设置好所有的纹理,绑定到对应的 ...
- exce中42093和日期之间的关系
在EXECEL中数字0 代表日期 1900-1-0 ,即这个日期为起始日期,算是第0天数字1 代表日期 1900-1-1 ,即第一天数字2 代表日期 1900-1-2 ,即第二天......数字415 ...
- Oracle层次查询和分析函数在号段选取中的应用
转自:http://www.itpub.net/thread-719692-1-1.html 摘要一组连续的数,去掉中间一些数,如何求出剩下的数的区间(即号段)?知道号段的起止,如何求出该号段内所有的 ...