推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)
下面简单列举几种常用的推荐系统评测指标:
1、准确率与召回率(Precision & Recall)
准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。
一般来说,Precision就是检索出来的条目(比如:文档、网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。
正确率、召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价指标。不妨看看这些指标的定义先:
1. 正确率 = 提取出的正确信息条数 / 提取出的信息条数
2. 召回率 = 提取出的正确信息条数 / 样本中的信息条数
两者取值在0和1之间,数值越接近1,查准率或查全率就越高。
3. F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值)
不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:
正确率 = 700 / (700 + 200 + 100) = 70%
召回率 = 700 / 1400 = 50%
F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%
不妨看看如果把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:
正确率 = 1400 / (1400 + 300 + 300) = 70%
召回率 = 1400 / 1400 = 100%
F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%
由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。
当然希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。
2、综合评价指标(F-Measure)
P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。
F-Measure是Precision和Recall加权调和平均:
当参数α=1时,就是最常见的F1,也即
可知F1综合了P和R的结果,当F1较高时则能说明试验方法比较有效。
3、E值
E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式:
b越大,表示查准率的权重越大。
4、平均正确率(Average Precision, AP)
平均正确率表示不同查全率的点上的正确率的平均。
原文链接:http://blog.csdn.net/taohuaxinmu123/article/details/9833001
本文链接:http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。
推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)的更多相关文章
- 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)
转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...
- 准确率(Precision),召回率(Recall)以及综合评价指标(F1-Measure)
准确率和召回率是数据挖掘中预测,互联网中得搜索引擎等经常涉及的两个概念和指标. 准确率:又称“精度”,“正确率” 召回率:又称“查全率” 以检索为例,可以把搜索情况用下图表示: 相关 不相关 检索 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...
- fashion_mnist 计算准确率、召回率、F1值
本文发布于 2020-12-27,很可能已经过时 fashion_mnist 计算准确率.召回率.F1值 1.定义 首先需要明确几个概念: 假设某次预测结果统计为下图: 那么各个指标的计算方法为: A ...
- 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(Fals ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
- 精确率、准确率、召回率和F1值
当我们训练一个分类模型,总要有一些指标来衡量这个模型的优劣.一般可以用如题的指标来对预测数据做评估,同时对模型进行评估. 首先先理解一下混淆矩阵,混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用 ...
- 机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)
摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型 ...
- 分类指标准确率(Precision)和正确率(Accuracy)的区别
http://www.cnblogs.com/fengfenggirl/p/classification_evaluate.html 一.引言 分类算法有很多,不同分类算法又用很多不同的变种.不同的分 ...
随机推荐
- 【ASP.NET】System.Web.Routing - RouteCollection Class
Provides a collection of routes for ASP.NET routing. The RouteCollection class provides methods that ...
- yyyy-MM-dd'T'HH:mm:ss.SSS'Z'即UTC时间,与String日期转换
本文为博主原创,未经允许不得转载: 最近在使用一个时间插件的时候,接收到的时间格式是 ’2017-11-27T03:16:03.944Z’ ,当我进行双向数据绑定的时候,由后台传过来的时间绑定到时间 ...
- 每天一个小程序—0000题(python图像处理)
第 0000 题: 将你的 QQ 头像(或者微博头像)右上角加上红色的数字,类似于微信未读信息数量那种提示效果. 类似于图中效果 python中的pillow库是专门用于处理图像的. from PIL ...
- EDCheckPrefabRef
using UnityEngine;using System.Collections;using UnityEditor;using UnityEngine.UI;using System.Refle ...
- Codeforces 785E. Anton and Permutation
题目链接:http://codeforces.com/problemset/problem/785/E 其实可以CDQ分治... 我们只要用一个数据结构支持单点修改,区间查询比一个数大(小)的数字有多 ...
- VC异常.简单抛,简单捕获
1.ZC:始终没有找到,能像Delphi7里面那样能抛 字符串描述 的异常信息.(难道Delphi是这样做的?:在程序的最外围 套了一层异常捕获,然后在获取到异常之后,自己再将异常信息弹出来,我们写的 ...
- libxml2_ZC积累
1.Qt5.3.2(VS2010 OpenGL) 1.1.查找节点的 带NameSpace的属性 参考网址:https://stackoverflow.com/questions/7872413/ho ...
- cin 与 getchar 中的坑
今天在一道题上发现一个坑. 输入三个字符,按以下规则求其平均值. (1)如果是数字0~9,那么直接参与求值: (2)如果是其他字符,则其ASCII码参与求值. 输入 输入数据有多组.第一行是数据的组数 ...
- Hadoop如何将TB级大文件的上传性能优化上百倍?
这篇文章,我们来看看,Hadoop的HDFS分布式文件系统的文件上传的性能优化. 首先,我们还是通过一张图来回顾一下文件上传的大概的原理. 由上图所示,文件上传的原理,其实说出来也简单. 比如有个TB ...
- 力扣 (LeetCode)657. 机器人能否返回原点
在二维平面上,有一个机器人从原点 (0, 0) 开始.给出它的移动顺序,判断这个机器人在完成移动后是否在 (0, 0) 处结束. 移动顺序由字符串表示.字符 move[i] 表示其第 i 次移动.机器 ...