POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内
A Round Peg in a Ground Hole
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5456 Accepted: 1735 Description
The DIY Furniture company specializes in assemble-it-yourself furniture kits. Typically, the pieces of wood are attached to one another using a wooden peg that fits into pre-cut holes in each piece to be attached. The pegs have a circular cross-section and so are intended to fit inside a round hole.
A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.
There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding hole in other pieces, the precise location where the peg must fit is known.
Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn). The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).Input
Input consists of a series of piece descriptions. Each piece description consists of the following data:
Line 1 < nVertices > < pegRadius > < pegX > < pegY >
number of vertices in polygon, n (integer)
radius of peg (real)
X and Y position of peg (real)
n Lines < vertexX > < vertexY >
On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.Output
For each piece description, print a single line containing the string:
HOLE IS ILL-FORMED if the hole contains protrusions
PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position
PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated positionSample Input
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1Sample Output
HOLE IS ILL-FORMED
PEG WILL NOT FITSource
/*************************************************************************
> File Name: poj_1584_back.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年04月06日 星期一 19时03分03秒
************************************************************************/ #include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <cstdio>
#define EPS 1e-8
using namespace std;
struct point{
double x, y;
};
const int N = ;
point p[N];
double Min(double a, double b)
{
return a < b ? a : b;
}
double Max(double a, double b)
{
return a > b ? a : b;
}
int sgn(double d)
{
if (fabs(d) < EPS)
return ;
return d > ? : -;
}
double x_mutli(point p1, point p2)
{
return (p1.x * p2.y - p2.x * p1.y);
}
double dot_multi(point p1, point p2)
{
return (p1.x * p2.x + p1.y * p2.y);
}
//方向
double get_direction(point p1, point p2, point p3)
{
point v1, v2;
v1.x = p3.x - p1.x; v1.y = p3.y - p1.y;
v2.x = p2.x - p1.x; v2.y = p2.y - p1.y;
return x_mutli(v1, v2);
}
//得到模长
double get_length_of_mold(point p)
{
return sqrt(p.x * p.x + p.y * p.y);
}
bool is_vonvex(int n)
{
double tmp1 = 0.0, tmp2;
for (int i = ; i < n; i++)//因为凸多边形的相邻边的拐向都相同,要么都顺时针,要么多逆时针
{
tmp2 = sgn(get_direction(p[i], p[(i+)%n], p[(i+)%n]));
if (tmp1 * tmp2 < -EPS)
return false;
tmp1 = tmp2;
}
return true;
} //叉积判断点是否在多边形内,只适合凸多边形
bool point_in_polygon(point peg, int n)
{
double tmp1 = 0.0, tmp2;
for (int i = ; i < n; i++)
{
tmp2 = sgn(get_direction(p[i], p[(i+)%n], peg));
if (tmp1 * tmp2 < -EPS)
return false;
tmp1 = tmp2;
}
return true;
}
//判断圆是否在多边形内,就是判断点到边的最小离跟半径的关系
bool circle_in_polygon(point peg, double peg_r, int n)
{
if (peg_r == 0.0)
return true;
double shadow;//v1向量在v2向量上的投影长度 a点乘b然后除以b的模就是a在b上的投影
point v1, v2;
double ans;
for (int i = ; i < n; i++)
{
v1.x = peg.x - p[i].x; v1.y = peg.y - p[i].y;
v2.x = p[(i+)%n].x - p[i].x; v2.y = p[(i+)%n].y - p[i].y;
shadow = dot_multi(v1, v2) / (v2.x * v2.x + v2.y * v2.y) * 1.0;//这里是求投影占v2向量模的长度 的比例,如果大于1,或者小于0, 垂足肯定在外面了
if (shadow >= 0.0 && shadow <= 1.0)//利用面积来求高,也就是距离,叉乘的绝对值是三角形面积的两倍
ans = fabs(x_mutli(v1, v2)) / get_length_of_mold(v2);
else
{
//如果垂足在外面,找最近的一个端点
v2.x = peg.x - p[(i+)%n].x; v2.y = peg.y - p[(i+)%n].y;
ans = sgn(get_length_of_mold(v1) - get_length_of_mold(v2)) == - ? get_length_of_mold(v1) : get_length_of_mold(v2);
}
if (ans - peg_r < -EPS)//如果相交,返回false
return false;
}
return true; }
int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int n;
point peg;
double peg_r;
while (~scanf("%d", &n) && n >= )
{
scanf("%lf %lf %lf", &peg_r, &peg.x, &peg.y);
for (int i = ; i < n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y);
if (!is_vonvex(n))//判断是否是凸多边形
{
puts("HOLE IS ILL-FORMED");
continue;
}
if (point_in_polygon(peg , n) && circle_in_polygon(peg, peg_r, n))
{
puts("PEG WILL FIT");
}
else
puts("PEG WILL NOT FIT");
}
return ;
}
用射线的方法来判断点是否在多边形内
bool on_line(point p1, point p2, point p3)
{
if (p3.x >= Min(p1.x, p2.x) && p3.x <= Max(p1.x, p2.x) && p3.y <= Min(p1.y, p2.y) && p3.y <= Max(p1.y, p2.y))
return sgn(get_direction(p1, p2, p3)) == ;
return false;
}
//射线的方法判别点在多边形内
bool point_in_polygon_ray(point peg, int n, double peg_r)
{
int counter = ;
double xinter;
point p1, p2;
p1 = p[];
for (int i = ; i <= n; i++)
{
p2 = p[i % n];
if (on_line(p1, p2, peg))
if (sgn(peg_r) == )
return false;
else
return true;
if (peg.y > Min(p1.y, p2.y))
{
if (peg.y <= Max(p1.y, p2.y))
{
if (peg.x <= Max(p1.x, p2.x))
{
if (p1.y != p2.y)
{
xinter = (peg.y - p2.y) * (p1.x - p2.x) / (p1.y - p2.y) + p2.x;
if (p1.x == p2.x || peg.x <= xinter)
counter++;
}
}
}
}
p1 = p2;
}
if (counter % == )
return false;
return true;
}
角度和判定是否在多边形内
//判断点在直线上 p3在p1p2上
bool point_on_line(point p1, point p2, point p3)
{
if (p3.x >= Min(p1.x, p2.x) && p3.x <= Max(p1.x, p2.x) && p3.y >= Min(p1.y, p2.y) && p3.y <= Max(p1.y, p2.y))
return sgn(get_direction(p1, p2, p3)) == ;
return false;
}
//判断点是否在多边形内,角度和算法
bool point_is_inside_angle(point peg, int n)
{
double sum = 0.0;
point v1, v2, v3;
for (int i = ; i < n; i++)
{
if (peg == p[i])
return true;
if (p[i] == p[(i + ) % n])
continue;
if (point_on_line(p[i], p[(i+)%n], peg))
return true;
v1.x = peg.x - p[i].x; v1.y = peg.y - p[i].y;
v2.x = peg.x - p[(i+)%n].x; v2.y = peg.y - p[(i+)%n].y;
v3.x = p[i].x - p[(i+)%n].x; v3.y = p[i].y - p[(i+)%n].y;
double a = get_length_of_mold(v1);
double b = get_length_of_mold(v2);
double c = get_length_of_mold(v3);
sum += sgn(x_mutli(v1, v2)) * acos((a * a + b * b - c * c) / (2.0 * a * b));
}
sum = fabs(sum);
if (sgn(sum - 2.0 * PI) == )
return true;
return false;
}
改进弧长法(这个方法还未理解,如果哪位大神路过这,麻烦留一下言)
double x_multi_2(point p1,point p2,point p3)
{
return (p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y);
}
int get_tmp(point p0)
{
return p0.x>=0?(p0.y>=0?0:3):(p0.y>=0?1:2);
}
//改进弧长法
bool point_is_inside_arc(point peg, int n)
{
int tmp1,tmp2,sum=0,i;
point p0,p1;
p0.x=peg.x,p0.y=peg.y;
p1.x=p[0].x-p0.x,p1.y=p[0].y-p0.y;
tmp1=get_tmp(p1); for(i=0;i<n;i++)
{
if(p[i]==p0)
break;
int t0=sgn(x_multi_2(p[i],p[(i+1)%n], p0));
int t1=sgn((p[i].x-p0.x)*(p[(i+1)%n].x-p0.x));
int t2=sgn((p[i].y-p0.y)*(p[(i+1)%n].y-p0.y)); if(!t0&&t1<=0&&t2<=0) //被测点在多边形边上
break;
p1.x=p[(i+1)%n].x-p0.x,p1.y=p[(i+1)%n].y-p0.y;
tmp2=get_tmp(p1); //计算象限
switch((tmp2-tmp1+4)%4)
{
case 1:{ sum++; break; }
case 2:
{
if(t0>0) sum+=2;
else sum-=2;
break;
}
case 3: { sum--; break; }
}
tmp1=tmp2;
}
if(i<n||sum) //被测点在多边形边上或者在多边形内部
return true;
return false;
}
POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
- POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
- POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Acc ...
- POJ 1584 A Round Peg in a Ground Hole
先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include ...
- POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...
- POJ 1584 A Round Peg in a Ground Hole --判定点在形内形外形上
题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内. 解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆 ...
- 简单几何(点的位置) POJ 1584 A Round Peg in a Ground Hole
题目传送门 题意:判断给定的多边形是否为凸的,peg(pig?)是否在多边形内,且以其为圆心的圆不超出多边形(擦着边也不行). 分析:判断凸多边形就用凸包,看看点集的个数是否为n.在多边形内用叉积方向 ...
- POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
随机推荐
- android:persistent属性
application PhoneApp既没有被Broadcast唤醒,也没有被其他service调用,那么是android是通过什么方式来启动PhoneApp,所以就发现了属性android:per ...
- java单点登录系统CAS的简单使用
转:http://blog.csdn.net/yunye114105/article/details/7997041 背景 有几个相对独立的java的web应用系统, 各自有自己的登陆验证功能,用户在 ...
- 解决Maven中Missing artifact javax.jms:jms:jar:1.1:compile
搭建好项目后报错: Missing artifact javax.jms:jms:jar:1.1:compile 于POM.xml中 解决方案: 一 :在nexus中配置一个代理仓库 地址为 ...
- JSP语法
第3章 JSP语法 [本章专家知识导学] JSP是建立在Java语言基础上的一种Web程序设计语言,具有自己特有的用法和指令.本章首先介绍JSP页面的程序结构,然后讲述JSP程序中经常用到基本的面向 ...
- 优秀开源项目的svn地址
很多优秀的开源项目已经提供SVN源码签出了,无论是解疑还是学习,都是一大幸福之事啊! Apache的SVN库,强烈推荐! http://svn.apache.org/repos/asf/ 里面不但有S ...
- 谈谈Parser --王垠
一直很了解人们对于parser的误解,可是一直都提不起兴趣来阐述对它的观点.然而我觉得是有必要解释一下这个问题的时候了.我感觉得到大部分人对于parser的误解之深,再不澄清一下,恐怕这些谬误就要写进 ...
- RocksDB介绍:一个比LevelDB更彪悍的引擎
关于LevelDB的资料网上还是比较丰富的,如果你尚未听说过LevelDB,那请稍微预习一下,因为RocksDB实际上是在LevelDB之上做的改进.本文主要侧重在架构上对RocksDB对LevelD ...
- Truck History
poj1789:http://poj.org/problem?id=1789 题意大概是这样的:用一个7位的string代表一个编号,两个编号之间的distance代表这两个编号之间不同字母的个数.一 ...
- DB2中的系统表SYSIBM.SYSDUMMY1
ORACLE中有一张系统数据库表DUAL用来访问系统的相关信息 SELECT SYSDATE FROM DUAL; --返回当前系统日期 ------------------------------ ...
- Hibernate 配置详解(3)
7) hibernate.max_fetch_depth: 该属性用于设置left out join单对象查询关系(one-to-one/many-to-one)中最大的关联深度.默认值为0,即默认情 ...