BZOJ_1005_ [HNOI2008]_明明的烦恼_(组合数学+purfer_sequence+高精度+分解因数+快速幂)
描述
http://www.lydsy.com/JudgeOnline/problem.php?id=1005
一棵树有n个点,给出没给节点的度,如果没有限制则为-1,求共有多少种可能的树.
分析
蒟蒻我肯定是不会做的,所以先来抄一段题解...
这题需要了解一种数列: Purfer Sequence
我们知道,一棵树可以用括号序列来表示,但是,一棵顶点标号(1~n)的树,还可以用一个叫做 Purfer Sequence 的数列表示
一个含有 n 个节点的 Purfer Sequence 有 n-2 个数,Purfer Sequence 中的每个数是 1~n 中的一个数
一个定理:一个 Purfer Sequence 和一棵树一一对应
先看看怎么由一个树得到 Purfer Sequence
由 一棵树得到它的 Purfer Sequence 总共需要 n-2 步,每一步都在当前的树中寻找具有最小标号的叶子节点(度为 1),将与其相连的点的标号设为 Purfer Sequence 的第 i 个元素,并将此叶子节点从树中删除,直到最后得到一个长度为 n-2 的 Purfer Sequence 和一个只有两个节点的树
看看下面的例子:
假设有一颗树有 5 个节点,四条边依次为:(1, 2), (1, 3), (2, 4), (2, 5),如下图所示:
第 1 步,选取具有最小标号的叶子节点 3,将与它相连的点 1 作为第 1 个 Purfer Number,并从树中删掉节点 3:
第 2 步,选取最小标号的叶子节点 1,将与其相连的点 2 作为第 2 个 Purfer Number,并从树中删掉点 1:
第 3 步,选取最小标号的叶子节点 4,将与其相连的点 2 作为第 3 个 Purfer Number,并从树中删掉点 4:
最后,我们得到的 Purfer Sequence 为:1 2 2
不难看出,上面的步骤得到的 Purfer Sequence 具有唯一性,也就是说,一个树,只能得到一个唯一的 Purfer Sequence
接下来看,怎么由一个 Purfer Sequence 得到一个树
由 Purfer Sequence 得到一棵树,先将所有编号为 1 到 n 的点的度赋初值为 1,然后加上它在 Purfer Sequence 中出现的次数,得到每个点的度
先执行 n-2 步,每一步,选取具有最小标号的度为 1 的点 u 与 Purfer Sequence 中的第 i 个数 v 表示的顶点相连,得到树中的一条边,并将 u 和 v 的度减一
最后再把剩下的两个度为 1 的点连边,加入到树中
我们可以根据上面的例子得到的 Purfer Sequence :1 2 2 重新得到一棵树
Purfer Sequence 中共有 3 个数,可以知道,它表示的树中共有 5 个点,按照上面的方法计算他们的度为下表所示:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 2 | 3 | 1 | 1 | 1 |
第 1 次执行,选取最小标号度为 1 的点 3 和 Purfer Sequence 中的第 1 个数 1 连边:
将 1 和 3 的度分别减一:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 1 | 3 | 0 | 1 | 1 |
第 2 次执行,选取最小标号度为 1 的点 1 和 Purfer Sequence 中的第 2 个数 2 连边:
将 1 和 2 的度分别减一:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 0 | 2 | 0 | 1 | 1 |
第 3 次执行,将最小标号度为 1 的点 4 和 Purfer Sequence 第 3 个数 2 连边:
将 2 和 4 的度分别减一:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 0 | 1 | 0 | 0 | 1 |
最后,还剩下两个点 2 和 5 的度为 1,连边:
至此,一个 Purfer Sequence 得到的树画出来了,由上面的步骤可知,Purfer Sequence 和一个树唯一对应
综上,一个 Purfer Sequence 和一棵树一一对应
那么其数只要求出来合法的purfer sequence的数量就是生成树的数量。
将树转化为prufer编码:
n为树的节点数,d[i]为各节点的度数,(注意计算tot的时候只计算d[i]!=-1的数)m为无限制度数的节点数。



插第二个节点的方法有



基本上知道什么是purfer_sequence这道题就没问题了.然后就是组合数学的推导.由于要用高精度,除法不太方便,我是直接暴力分解因数,然后坐指数相加减...最后来一发快速幂.
p.s.
1.按理来说应该要特判无解的情况,但是没有特判也A了...
#include <bits/stdc++.h>
using namespace std; const int maxn=+,maxl=,base=;
int n,cnt,sum;
int s[maxn],c[maxn];
typedef long long ll; struct Bign{
int cnt; ll x[maxl];
Bign(int t=){
memset(x,,sizeof x);
x[cnt=]=t;
}
ll & operator [](int id){ return x[id]; }
}ans();
Bign operator *= (Bign &x,Bign &y){
Bign z;
for(int i=;i<=x.cnt;i++)for(int j=;j<=y.cnt;j++)
z[i+j-]+=x[i]*y[j], z[i+j]+=z[i+j-]/base, z[i+j-]%=base;
z.cnt=x.cnt+y.cnt;
if(!z[z.cnt]) z.cnt--;
x=z;
}
ostream & operator << (ostream &out,Bign &x){
printf("%lld",x[x.cnt]);
for(int i=x.cnt-;i;i--) printf("%08lld",x[i]);
return out;
}
void decomposition(int x,int y){
for(int i=;i*i<=x;i++)while(x%i==) c[i]+=y, x/=i;
if(x^) c[x]+=y;
}
void quick_power(int i,int y){
Bign x(i);
for(;y;x*=x, y>>=) if(y&) ans*=x;
}
int main(){
freopen("bzoj_1005.in","r",stdin);
freopen("bzoj_1005.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++){
int t; scanf("%d",&t);
if(t>) s[++cnt]=t-, sum+=t-;
}
for(int i=;i<=n-;i++) decomposition(i,);
for(int i=;i<=cnt;i++)for(int j=;j<=s[i];j++) decomposition(j,-);
for(int i=;i<=n--sum;i++) decomposition(i,-);
decomposition(n-cnt,n--sum);
for(int i=;i<=n;i++)if(c[i]) quick_power(i,c[i]);
cout<<ans<<endl;
return ;
}
1005: [HNOI2008]明明的烦恼
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 3980 Solved: 1583
[Submit][Status][Discuss]
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
1
-1
-1
Sample Output
HINT
两棵树分别为1-2-3;1-3-2
Source
BZOJ_1005_ [HNOI2008]_明明的烦恼_(组合数学+purfer_sequence+高精度+分解因数+快速幂)的更多相关文章
- BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)
题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...
- 【BZOJ】【1005】【HNOI2008】明明的烦恼
Prufer序列/排列组合+高精度 窝不会告诉你我是先做了BZOJ1211然后才来做这题的>_>(为什么?因为我以前不会高精度呀……) 在A了BZOJ 1211和1089之后,蒟蒻终于有信 ...
- 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4981 Solved: 1941 Description ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
- 【BZOJ1005】【HNOI2008】明明的烦恼
又是看黄学长的代码写的,估计我的整个BZOJ平推计划都要看黄学长的代码写 原题: 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连 ...
- [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...
- BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )
首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- BZOJ_1008_[HNOI2008]_越狱_(简单组合数学+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1008 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰 ...
随机推荐
- 03_线程的创建和启动_实现Runnable接口方式
[线程的创建和启动的步骤(实现Runnable接口方式)] 1.定义Runnable接口的实现类,并重写其中的run方法.run()方法的方法体是线程执行体. class SonThread imp ...
- Headfirst设计模式的C++实现——组合模式(Composite)
menu_component.h #ifndef _MENU_COMPONENT_H_ #define _MENU_COMPONENT_H_ #include <string> class ...
- remastersys修改默认选项
1.vim /etc/remastersys/isolinux/isolinux.cfg.vesamenu default vesamenu.c32prompt 0timeout 100 menu t ...
- 简单重置Centos服务器中Mysql的root密码
1.编辑MySQL配置文件my.cnf vi /etc/my.cnf #编辑文件,找到[mysqld],在下面添加一行skip-grant-tables [mysqld] skip-grant-tab ...
- Cassandra1.2文档学习(7)—— 规划集群部署
数据参考:http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html#cassandra/architecture/a ...
- jQuery实现鼠标移到元素上动态提示消息框效果
当光标移动到某些元素上时,会弹出像tips的提示框,这种效果想必大家都有见到过吧,下面有个不错的示例,大家可以感受下 当光标移动到某些元素上时,会弹出像tips的提示框. 复制代码代码如下: < ...
- RHEL 6.1字符界面无法登录SSH却能登录
1.具体版本: 2.具体现象: 每次输入用户名密码登录之后又跳到这个界面.但是用ssh却可以登录. 3.查看日志 [root@localhost ~]# tail -f /var/log/secure ...
- Python设计模式——建造者模式
需求,画人物,要求画一个人的头,左手,右手,左脚,右脚和身体,画一个瘦子,一个胖子 不使用设计模式 #encoding=utf-8 __author__ = 'kevinlu1010@qq.com' ...
- C++ 输入输出文件流(ifstream&ofstream)
ofstream是从内存到硬盘,ifstream是从硬盘到内存,其实所谓的流缓冲就是内存空间; 在C++中,有一个stream这个类,所有的I/O都以这个“流”类为基础的,包括我们要认识的文件I/O, ...
- Linux-ubuntu
在VMware安装ubuntu时磁盘分配如下: /boot 100MB / 2G swap 512MB /home 5G /var 1G /usr 5G+. 设置root权限:sudo passwd ...