B - LIS

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

一组研究人员正在设计一项实验,以测试猴子的智商。他们将挂香蕉在建筑物的屋顶,同时,提供一些砖块给这些猴子。如果猴子足够聪明,它应当能够通过合理的放置一些砖块建立一个塔,并爬上去吃他们最喜欢的香蕉。
 
研究人员有n种类型的砖块,每种类型的砖块都有无限个。第i块砖块的长宽高分别用xi,yi,zi来表示。 同时,由于砖块是可以旋转的,每个砖块的3条边可以组成6种不同的长宽高。
 
在构建塔时,当且仅当A砖块的长和宽都分别小于B砖块的长和宽时,A砖块才能放到B砖块的上面,因为必须留有一些空间让猴子来踩。
 
你的任务是编写一个程序,计算猴子们最高可以堆出的砖块们的高度。

Input

输入文件包含多组测试数据。
每个测试用例的第一行包含一个整数n,代表不同种类的砖块数目。n<=30.
接下来n行,每行3个数,分别表示砖块的长宽高。
当n= 0的时候,无需输出任何答案,测试结束。

Output

对于每组测试数据,输出最大高度。格式:Case 第几组数据: maximum height = 最大高度

Sample Input

1
10 20 30 

6 8 10 
5 5 5 

1 1 1 
2 2 2 
3 3 3 
4 4 4 
5 5 5 
6 6 6 
7 7 7 

31 41 59 
26 53 58 
97 93 23 
84 62 64 
33 83 27 

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21 
Case 3: maximum height = 28 
Case 4: maximum height = 342 
解题思路:
这个问题需要用到DAG路径模型,与紫书上的262页的嵌套矩形问题一样,这里需要注意的是,最好将三种情况都放到结构体数组X[]中存储好,然后对其降序排序,
最后再进行DAG路经模型算法
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
struct node
{
int a,b,c;
}x[];
bool cmp(node p,node q)
{
return p.a<q.a||(q.a==p.a&&p.b<q.b);
}
long long int dp[],w;
int n,k;
void init()
{
int y[];
k=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&y[],&y[],&y[]);
sort(y,y+);
x[k].a=y[];x[k].b=y[];x[k].c=y[];k++;
x[k].a=y[];x[k].b=y[];x[k].c=y[];k++;
x[k].a=y[];x[k].b=y[];x[k].c=y[];k++;
}
}
void work()
{
sort(x,x+k,cmp);
for(int i=;i<k;i++)
dp[i]=x[i].c;
w=;
for(int i=;i<k;i++)
{
int mx=;
for(int j=i-;j>=;j--)
if((x[i].a>x[j].a&&x[i].b>x[j].b)&&mx<dp[j])
mx=dp[j];
dp[i]+=mx;
w=max(w,dp[i]);
}
}
int main()
{
int Case=;
while(scanf("%d",&n)==&&n)
{
init();
work();
printf("Case %d: maximum height = %d\n",++Case,w);
}
return ;
}

动态规划——B 最大高度问题的更多相关文章

  1. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

  2. {POJ}{动态规划}{题目列表}

    动态规划与贪心相关: {HDU}{4739}{Zhuge Liang's Mines}{压缩DP} 题意:给定20个点坐标,求最多有多少个不相交(点也不相交)的正方形 思路:背包问题,求出所有的正方形 ...

  3. 【动态规划】拦截导弹_dilworth定理_最长递增子序列

    问题 K: [动态规划]拦截导弹 时间限制: 1 Sec  内存限制: 256 MB提交: 39  解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...

  4. 【动态规划】skiing_深度搜索_动态规划

    问题 B: [动态规划]skiing 时间限制: 1 Sec  内存限制: 128 MB提交: 28  解决: 11[提交][状态][讨论版] 题目描述 Michael喜欢滑雪百这并不奇怪, 因为滑雪 ...

  5. 转载:hdu 动态规划题集

    1.Robberies 连接 :http://acm.hdu.edu.cn/showproblem.php?pid=2955     背包;第一次做的时候把概率当做背包(放大100000倍化为整数): ...

  6. 动态规划 算法(DP)

    多阶段决策过程(multistep decision process)是指这样一类特殊的活动过程,过程可以按时间顺序分解成若干个相互联系的阶段,在每一个阶段都需要做出决策,全部过程的决策是一个决策序列 ...

  7. 【动态规划】Vijos P1037 搭建双塔

    题目链接: https://vijos.org/p/1037 题目大意: 给n块砖的长度(n<=100),问从中任选m块砖能否建成2个相同高度的塔. 能的话求最高高度,不能输出 Impossib ...

  8. 【动态规划】Vijos P1011 清帝之惑之顺治

    题目链接: https://vijos.org/p/1011 题目大意: 给一张N*M的地图(N,M<=500),可从任一点开始沿上下左右走,只能走比当前低的地方.问最长能走多少格. 题目思路: ...

  9. 动态规划——I 记忆化搜索

    Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

随机推荐

  1. Switch Case语句中多个值匹配同一个代码块的写法

    switch ($p) { case 'home': case '': $current_home = 'current'; break; case 'users.online': case 'use ...

  2. 怎样在thinkphp里面执行原生的sql语句

    $Model = new Model(); $sql = "select * from `order`"; $voList = $Model->query($sql); 只是 ...

  3. hibernate4.3.8整合struts2过程中遇到的问题

    1.遇到的异常: Exception in thread "main" org.hibernate.service.spi.ServiceException: Unable to ...

  4. JS 通过系统时间限定 动态添加 select option

    虽然是个简单的效果,还是需要积累一下,记录一下: 在八月一号之后,删除最后一项,新添加2016级 — — 2015级 2014级 2013级 2012级 在六月一号之后,删除最后一项,新添加2016级 ...

  5. SpringMVC4+thymeleaf3的一个简单实例(篇三:页面参数获取)

    本篇将通过示例介绍页面参数是如何传递到后台的.我们继续沿用之前搭好的程序结构,如果你不知道,请参照前两篇.为方便跳转页面,我们在首页以及zoolist.html页面都加上彼此地址的链接:首页: zoo ...

  6. 判断奇数,java陷阱

    /** 判断是否为奇数 @author husky / public class IsOdd { public static void main(String[] args) { int demo1 ...

  7. 【POJ2752】【KMP】Seek the Name, Seek the Fame

    Description The little cat is so famous, that many couples tramp over hill and dale to Byteland, and ...

  8. 如何用angularjs制作一个完整的表格之五__完整的案例

    由于本人也是边学边写,因此整理的比较乱,下面放出我例子的完整代码,方便大家交流测试,如有问题欢迎评论 首先,表格采用的是BootStrap样式编辑的,主要使用的是angularjs,为了方便也有jQu ...

  9. HTML5拖放API

    拖放事件事件提供了拖放可以控制几乎所有方面的拖放操作.棘手的部分是确定每个事件触发:在拖项目火:别人火下降的目标.拖动项时,以下事件(按照这个顺序): 拖曳开始拖dragend此刻你把鼠标按钮和开始移 ...

  10. 使用PHP预定义变量得到url地址及相关参数

    获取url地址栏参数多种方法:$_SERVER["SERVER_PORT"]//获取端口$_SERVER['HTTP_HOST']//获取域名或主机地址 如www.sina.com ...