在利用基本的概率论模型解决实际问题的时候,我们很容易发现一些随机变量的连续分布的,例如火车进站的时间、台灯的寿命等一些和时间相关的随机变量,此时我们发现我们难以求出某个点的概率了,因为随机变量是连续的,基本事件空间是一个无穷的空间,而与无限、连续这些字眼相关,很自然的想到,这里我们要借助积分的工具。

现在我们面临的问题是,如何用上积分这个工具呢?我们假想一条曲线f(x)和连续随机变量的取值区间[a,b]围成了一个面积为1的曲边梯形,(之所以控制面积为1,是为了满足分布列的基本性质),那么对于P(c≤X≤d),就等于f(x)在[c,d]的定积分。

容易看到对于不同问题的分布列,这样一个曲边梯形中的f(x)和分布列自身是构成一一映射的,我们称f(x)是连续随机变量X的概率密度曲线。

基于这些东西,我们可以很好地给连续随机变量下一个定义了:

满足这样的概率分布的分布列的随机变量X成为连续性随机变量(其中B是表示取值范围的集合)。

Ex1 (uva 11346):

给出一个区域[-a,b] , [-b,b],给出面积S,问在该区域内任选一点P,使得P和坐标原点为对角线的矩形的面积大于S的概率是多少。

分析:

很典型的几何概型问题或者说连续型随机变量,这里需要注意的是,定积分求解出一个结果会出现ln,要保证ln在程序中运算有意义,所以它的真数要大于0.

《A First Course in Probability》-chaper5-连续型随机变量-基本概念的更多相关文章

  1. 【概率论与数理统计】小结4 - 一维连续型随机变量及其Python实现

    注:上一小节总结了离散型随机变量,这个小节总结连续型随机变量.离散型随机变量的可能取值只有有限多个或是无限可数的(可以与自然数一一对应),连续型随机变量的可能取值则是一段连续的区域或是整个实数轴,是不 ...

  2. 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的分布

    在讨论连续型随机变量函数的分布时,我们从一般的情况中(讨论正态分布的文章中提及),能够得到简化版模型. 回忆利用分布函数和概率密度的关系求解随机变量函数分布的过程,有Y=g(x),如果g(x)是严格单 ...

  3. 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的期望

    在关于离散型随机变量函数的期望的讨论中,我们很容易就得到了如下的等式: 那么推广到连续型随机变量,是否也存在类似的规律呢? 即对于连续型随机变量函数的期望,有: 这里给出一个局部的证明过程,完整的证明 ...

  4. 《A First Course in Probability》-chaper5-连续型随机变量-正态分布

    古典统计学问题一开始起源于赌博,让我们看这样一道有关赌博的问题. Q:A.B两人进行n局赌博,A胜的概率是p,现在设置随机变量X表示A赢的局数,当X>np,A给赌场X-np元,否则B给赌场np- ...

  5. 连续型变量的推断性分析——t检验

    连续型变量的推断性分析方法主要有t检验和方差分析两种,这两种方法可以解决一些实际的分析问题,下面我们分别来介绍一下这两种方法 一.t检验(Student's t test) t检验也称student ...

  6. 常用连续型分布介绍及R语言实现

    常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数 ...

  7. seaborn 数据可视化(一)连续型变量可视化

    一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制: ...

  8. 处理离散型特征和连续型特征共存的情况 归一化 论述了对离散特征进行one-hot编码的意义

    转发:https://blog.csdn.net/lujiandong1/article/details/49448051 处理离散型特征和连续型特征并存的情况,如何做归一化.参考博客进行了总结:ht ...

  9. 2×c列联表|多组比例简式|卡方检验|χ2检验与连续型资料假设检验

    第四章 χ2检验 χ2检验与连续型资料假设检验的区别? 卡方检验的假设检验是什么? 理论值等于实际值 何条件下卡方检验的需要矫正?如何矫正? 卡方检验的自由度如何计算? Df=k-1而不是n-1 卡方 ...

随机推荐

  1. ratingBar抢焦点问题

    ratingBar抢viewpager焦点问题: 1)写一个类继承ratingBar,让onTouchevent或者dispatchTouchEvent返回false 2)设置ratingBar的属性 ...

  2. 前端过滤XSS攻击

    日常开发过程中,对于存在用户交互的一些门户网站等,过滤xss攻击是必不可少的. 此处主要记录下我在工作过程中的简单处理方法. 前端过滤XSS攻击, 我这里用的是开源工程 js-xss,官网地址:htt ...

  3. 某PHP代码加密

    <?php /* 本程序已加密: 2014-11-15 10:10:11 */ xs_run('JGxosS9QplmqLA6qjYo/LiX5ecUe0DH7p42Ww/Mdkf5/ybZDs ...

  4. java.lang.Exception: Socket bind failed: [730048] ?????????×???(Э?é/???????/???)????í??

    严重: Error starting endpoint java.lang.Exception: Socket bind failed: [730048] ?????????×???(Э?é/???? ...

  5. ng-view和ng-include之间的区别

    ng-view通过使用路由控制,可以方便的实现页面组合,但一个html文件中,只能有一个ng-view,他是可以被ctl控制的.ng-include就是将多个页面的公共页面提取出来,如header.h ...

  6. 【转】IOS 30多个iOS常用动画,带详细注释

    原文: http://blog.csdn.net/zhibudefeng/article/details/8691567 CoreAnimationEffect.h 文件 // CoreAnimati ...

  7. iOS RC4加解密算法

    -(NSString *)encrypt:(NSString *)string withKey:(NSString *)key{ self.sBox = [[self frameSBox:key] m ...

  8. C# List

    命名空间:using System.Collections; class Program {//做个比较 static void Main(string[] args) { //new对象 Cls a ...

  9. 分数拆分( Fractions Again, UVA 10976)-ACM

    It is easy to see that for every fraction in the form  (k > 0), we can always find two positive i ...

  10. Lua 5.1 for Delphi 2010

    This is a Lua 5.1 Wrapper for Delphi 2009 and Delphi 2010 which automatically creates OOP callback f ...