Window Pains
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2027   Accepted: 1025

Description

Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:

1 1 . .
1 1 . .
. . . .
. . . .
. 2 2 .
. 2 2 .
. . . .
. . . .
. . 3 3
. . 3 3
. . . .
. . . .
. . . .
4 4 . .
4 4 . .
. . . .
. . . .
. 5 5 .
. 5 5 .
. . . .
. . . .
. . 6 6
. . 6 6
. . . .
. . . .
. . . .
7 7 . .
7 7 . .
. . . .
. . . .
. 8 8 .
. 8 8 .
. . . .
. . . .
. . 9 9
. . 9 9

When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:

1 2 2 ?
1 2 2 ?
? ? ? ?
? ? ? ?
If window 4 were then brought to the foreground:
1 2 2 ?
4 4 2 ?
4 4 ? ?
? ? ? ?

. . . and so on . . . 
Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 3 components: 

  1. Start line - A single line: 
    START
  2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
  3. End line - A single line: 
    END

After the last data set, there will be a single line: 
ENDOFINPUT

Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

Output

For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

THESE WINDOWS ARE CLEAN

Otherwise, the output will be a single line with the statement: 
THESE WINDOWS ARE BROKEN

Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN

Source

——————————————————我是分割线——————————————————
拓扑排序,绝世好题。
前5分钟只想出来暴搜方法
后来想到可以记录每个方格能被哪些窗口盖住
转化成图论问题,拓扑排序求环
有环就是死机,否则就是好的。
真是的,如果不是事先知道这题是拓扑排序,我就只会写一发搜索剪枝去骗分了.......
读入写错了,调了半个钟头。
 /*
Problem:poj 2585
OJ: POJ
User: S.B.S.
Time: 0 ms
Memory: 700 kb
Length: 1991 b
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<vector>
#include<list>
#include<map>
#define maxn 10001
#define F(i,j,k) for(int i=j;i<k;i++)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define inf 0x7fffffff
#define maxm 2016
#define mod 1000000007
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int sc[][];
string cr[][];
bool vis[];
int in[];
bool g[][];
int t;
string s;
inline void init()
{
F(i,,)F(j,,) cr[i][j].erase();
F(k,,){
int i=(k-)/;
int j=(k-)%;
cr[i][j]+=char(k+'');
cr[i][j+]+=char(k+'');
cr[i+][j]+=char(k+'');
cr[i+][j+]+=char(k+'');
}
}
inline void input()
{
int i,j;
M(vis,);M(in,);M(g,);
t=;
int k;
F(i,,)F(j,,){
cin>>k;
sc[i][j]=k;
if(!vis[k]) t++;
vis[k]=true;
}
}
inline void build()
{
int a,b;
F(i,,)F(j,,)F(k,,cr[i][j].length())
{
if((!g[sc[i][j]][cr[i][j][k]-''])&&(sc[i][j]!=cr[i][j][k]-''))
{
g[sc[i][j]][cr[i][j][k]-'']=true;
in[cr[i][j][k]-'']++;
}
}
}
inline bool ok()
{
int i,j,k;
F(k,,t){
i=;
while(!vis[i]||(i<=&&in[i]>)) i++;
if(i>) return false;
vis[i]=false;
F(j,,){
if(vis[j]&&g[i][j]) in[j]--;
}
}
return true;
}
int main()
{
std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
init();
while(cin>>s)
{
if(s=="ENDOFINPUT") break;
input();
build();
if(ok()) cout<<"THESE WINDOWS ARE CLEAN"<<endl;
else cout<<"THESE WINDOWS ARE BROKEN"<<endl;
cin>>s;
}
return ;
}

poj 2585

poj 2585 Window Pains 解题报告的更多相关文章

  1. POJ 2585.Window Pains 拓扑排序

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1888   Accepted: 944 Descr ...

  2. poj 2585 Window Pains 暴力枚举排列

    题意: 在4*4的格子中有9个窗体,窗体会覆盖它之下的窗体,问是否存在一个窗体放置的顺序使得最后的结果与输入同样. 分析: 在数据规模较小且不须要剪枝的情况下能够暴力(思路清晰代码简单),暴力一般分为 ...

  3. POJ 2585 Window Pains 题解

    链接:http://poj.org/problem?id=2585 题意: 某个人有一个屏幕大小为4*4的电脑,他很喜欢打开窗口,他肯定打开9个窗口,每个窗口大小2*2.并且每个窗口肯定在固定的位置上 ...

  4. zoj 2193 poj 2585 Window Pains

    拓扑排序. 深刻体会:ACM比赛的精髓之处不在于学了某个算法或数据结构,而在于知道这个知识点但不知道这个问题可以用这个知识去解决!一看题目,根本想不到是拓扑排序.T_T...... #include& ...

  5. [POJ 2585] Window Pains 拓朴排序

    题意:你现在有9个2*2的窗口在4*4的屏幕上面,由于这9这小窗口叠放顺序不固定,所以在4*4屏幕上有些窗口只会露出来一部分. 如果电脑坏了的话,那么那个屏幕上的各小窗口叠放会出现错误.你的任务就是判 ...

  6. 【原创】leetCodeOj --- Sliding Window Maximum 解题报告

    天,这题我已经没有底气高呼“水”了... 题目的地址: https://leetcode.com/problems/sliding-window-maximum/ 题目内容: Given an arr ...

  7. Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)

     http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...

  8. POJ 3126 Prime Path 解题报告(BFS & 双向BFS)

    题目大意:给定一个4位素数,一个目标4位素数.每次变换一位,保证变换后依然是素数,求变换到目标素数的最小步数. 解题报告:直接用最短路. 枚举1000-10000所有素数,如果素数A交换一位可以得到素 ...

  9. 【原创】poj ----- 2376 Cleaning Shifts 解题报告

    题目地址: http://poj.org/problem?id=2376 题目内容: Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K ...

随机推荐

  1. CentOS 使用命令设置代理

    全局的代理设置, vim /etc/profile 添加下面内容 http_proxy = http://username:password@yourproxy:8080/ ftp_proxy = h ...

  2. Java 中类的初始化过程

    先来一张 JVM 中的内存模型 . 在Java 虚拟机原理这本书中介绍了类会被初始化的 5 种情况 . 1 遇到 new getstatic putstatic 和 invokestatic 这 4 ...

  3. php开启redis扩展

    1.安装redis git下载地址https://github.com/MSOpenTech/redis/releases 2.测试redis windows 运行(快捷键:windows键+R键), ...

  4. loj#2721. 「NOI2018」屠龙勇士

    题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的 ...

  5. [BZOJ 4809] 相逢是问候

    Link: 传送门 Solution: 以前没见过的套路题…… 1.使用EXT欧拉定理降幂的套路: $a^{x}=a^{xmod\phi(P)+\phi(P)} mod P$,且$x\ge P$ 这样 ...

  6. hihocoder 1866 XOR

    题面在这里 拆位分析一下就OK啦 /* y + (y xor x) */ #include<bits/stdc++.h> #define ll long long using namesp ...

  7. python 中__name__ = '__main__' 的作用,到底干嘛的?

    python 中__name__ = 'main' 的作用,到底干嘛的? 有句话经典的概括了这段代码的意义: "Make a script both importable and execu ...

  8. Linux怎么开启ssh

    一.查看ssh开启状态 service ssh status 这是已经开启了的状态 二.如果没有开启  键入以下命令开启 service ssh start 三.开启后如果不能利用xshell远程访问 ...

  9. 中国气象局某分院官网漏洞打包(弱口令+SQL注入+padding oracle)

    漏洞一.后台弱口令 后台地址:http://www.hnmatc.org/admin/ 直接爆破得到账号admin  密码admin888 漏洞二.SQL注入(前台后台都有) 注入点:http://w ...

  10. HTTP首部字段

    HTTP首部由首部字段名和首部字段值组成,以逗号隔开.如果首部出现重复,有些浏览器优先处理第一个出现的首部,有些优先处理后者. 主要分为四大类 通用首部字段 请求首部字段 响应首部字段 实体首部字段 ...