Window Pains
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2027   Accepted: 1025

Description

Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:

1 1 . .
1 1 . .
. . . .
. . . .
. 2 2 .
. 2 2 .
. . . .
. . . .
. . 3 3
. . 3 3
. . . .
. . . .
. . . .
4 4 . .
4 4 . .
. . . .
. . . .
. 5 5 .
. 5 5 .
. . . .
. . . .
. . 6 6
. . 6 6
. . . .
. . . .
. . . .
7 7 . .
7 7 . .
. . . .
. . . .
. 8 8 .
. 8 8 .
. . . .
. . . .
. . 9 9
. . 9 9

When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:

1 2 2 ?
1 2 2 ?
? ? ? ?
? ? ? ?
If window 4 were then brought to the foreground:
1 2 2 ?
4 4 2 ?
4 4 ? ?
? ? ? ?

. . . and so on . . . 
Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 3 components: 

  1. Start line - A single line: 
    START
  2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
  3. End line - A single line: 
    END

After the last data set, there will be a single line: 
ENDOFINPUT

Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

Output

For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

THESE WINDOWS ARE CLEAN

Otherwise, the output will be a single line with the statement: 
THESE WINDOWS ARE BROKEN

Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN

Source

——————————————————我是分割线——————————————————
拓扑排序,绝世好题。
前5分钟只想出来暴搜方法
后来想到可以记录每个方格能被哪些窗口盖住
转化成图论问题,拓扑排序求环
有环就是死机,否则就是好的。
真是的,如果不是事先知道这题是拓扑排序,我就只会写一发搜索剪枝去骗分了.......
读入写错了,调了半个钟头。
 /*
Problem:poj 2585
OJ: POJ
User: S.B.S.
Time: 0 ms
Memory: 700 kb
Length: 1991 b
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<vector>
#include<list>
#include<map>
#define maxn 10001
#define F(i,j,k) for(int i=j;i<k;i++)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define inf 0x7fffffff
#define maxm 2016
#define mod 1000000007
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int sc[][];
string cr[][];
bool vis[];
int in[];
bool g[][];
int t;
string s;
inline void init()
{
F(i,,)F(j,,) cr[i][j].erase();
F(k,,){
int i=(k-)/;
int j=(k-)%;
cr[i][j]+=char(k+'');
cr[i][j+]+=char(k+'');
cr[i+][j]+=char(k+'');
cr[i+][j+]+=char(k+'');
}
}
inline void input()
{
int i,j;
M(vis,);M(in,);M(g,);
t=;
int k;
F(i,,)F(j,,){
cin>>k;
sc[i][j]=k;
if(!vis[k]) t++;
vis[k]=true;
}
}
inline void build()
{
int a,b;
F(i,,)F(j,,)F(k,,cr[i][j].length())
{
if((!g[sc[i][j]][cr[i][j][k]-''])&&(sc[i][j]!=cr[i][j][k]-''))
{
g[sc[i][j]][cr[i][j][k]-'']=true;
in[cr[i][j][k]-'']++;
}
}
}
inline bool ok()
{
int i,j,k;
F(k,,t){
i=;
while(!vis[i]||(i<=&&in[i]>)) i++;
if(i>) return false;
vis[i]=false;
F(j,,){
if(vis[j]&&g[i][j]) in[j]--;
}
}
return true;
}
int main()
{
std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
init();
while(cin>>s)
{
if(s=="ENDOFINPUT") break;
input();
build();
if(ok()) cout<<"THESE WINDOWS ARE CLEAN"<<endl;
else cout<<"THESE WINDOWS ARE BROKEN"<<endl;
cin>>s;
}
return ;
}

poj 2585

poj 2585 Window Pains 解题报告的更多相关文章

  1. POJ 2585.Window Pains 拓扑排序

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1888   Accepted: 944 Descr ...

  2. poj 2585 Window Pains 暴力枚举排列

    题意: 在4*4的格子中有9个窗体,窗体会覆盖它之下的窗体,问是否存在一个窗体放置的顺序使得最后的结果与输入同样. 分析: 在数据规模较小且不须要剪枝的情况下能够暴力(思路清晰代码简单),暴力一般分为 ...

  3. POJ 2585 Window Pains 题解

    链接:http://poj.org/problem?id=2585 题意: 某个人有一个屏幕大小为4*4的电脑,他很喜欢打开窗口,他肯定打开9个窗口,每个窗口大小2*2.并且每个窗口肯定在固定的位置上 ...

  4. zoj 2193 poj 2585 Window Pains

    拓扑排序. 深刻体会:ACM比赛的精髓之处不在于学了某个算法或数据结构,而在于知道这个知识点但不知道这个问题可以用这个知识去解决!一看题目,根本想不到是拓扑排序.T_T...... #include& ...

  5. [POJ 2585] Window Pains 拓朴排序

    题意:你现在有9个2*2的窗口在4*4的屏幕上面,由于这9这小窗口叠放顺序不固定,所以在4*4屏幕上有些窗口只会露出来一部分. 如果电脑坏了的话,那么那个屏幕上的各小窗口叠放会出现错误.你的任务就是判 ...

  6. 【原创】leetCodeOj --- Sliding Window Maximum 解题报告

    天,这题我已经没有底气高呼“水”了... 题目的地址: https://leetcode.com/problems/sliding-window-maximum/ 题目内容: Given an arr ...

  7. Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)

     http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...

  8. POJ 3126 Prime Path 解题报告(BFS & 双向BFS)

    题目大意:给定一个4位素数,一个目标4位素数.每次变换一位,保证变换后依然是素数,求变换到目标素数的最小步数. 解题报告:直接用最短路. 枚举1000-10000所有素数,如果素数A交换一位可以得到素 ...

  9. 【原创】poj ----- 2376 Cleaning Shifts 解题报告

    题目地址: http://poj.org/problem?id=2376 题目内容: Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K ...

随机推荐

  1. 微信公众号开发--用.Net Core实现微信消息加解密

    1.进入微信公众号后台设置微信服务器配置参数(注意:Token和EncodingAESKey必须和微信服务器验证参数保持一致,不然验证不会通过). 2.设置为安全模式 3.代码实现(主要分为验证接口和 ...

  2. Failed to load JavaHL Library. SVN

    以前使用的电脑是32位的,安装的svn可以正常使用,但是现在的电脑室64位的,安装好svn后,把项目提交到svn的过程中,总是弹出来一个错误的对话框: Failed to load JavaHL Li ...

  3. 常用的PHP排序算法以及应用场景

    更多php排序算法应用常景:http://www.bf361.com/algorithm/algorithm-php 1.冒泡排序  冒泡排序:冒泡排序(Bubble Sort),是一种计算机科学领域 ...

  4. 《Android源码设计模式》--原型模式

    No1: 原型模式使用场景: 1)类初始化需要消耗非常多的资源,这个资源包括数据.硬件资源等,通过原型复制避免这些消耗 2)通过new产生一个对象需要非常繁琐的数据准备货访问权限,这是可以使用原型模式 ...

  5. ubuntu 安装 Sqlite 和 可视化工具 SqliteBroswer

    ubuntu 安装 Sqlite 和 可视化工具 SqliteBroswer   下载sqlite www.sqlite.org/download.html 安装Sqlite 创建一个目录:     ...

  6. BoneBlack am335x利用SD卡烧写板卡上的emmc

    参考ti论坛上面的一篇文章: 链接:https://pan.baidu.com/s/1SLSUbCRrIULJJf_BNI3sEQ 密码: hvem 自己稍微修改的debrick.sh 链接: htt ...

  7. 如何正确使用 Django的User Model

    阅读目录(Content) django——重写用户模型 1.修改配置文件,覆盖默认的User模型 2.引用User模型 3.指定自定义的用户模型 4.扩展Django默认的User 5.自定义用户与 ...

  8. 周末 “CTO训练营”

    今天下午去中关村参加了51cto高招 “CTO训练营”  第一期. 呃蛮有收获,聊技术发展,技术cto线路或对应发展,人事对应cto发展,投资人对应看法,51cto老总的看法. 呃,挺有意思,同样认识 ...

  9. bzoj 3283 扩展BSGS + 快速阶乘

    T2  扩展BSGS T3 快速阶乘 给定整数n,质数p和正整数c,求整数s和b,满足n! / pb = s mod pc 考虑每次取出floor(n/p)个p因子,然后将问题转化为子问题. /*** ...

  10. WIKIOI 1026 逃跑的拉尔夫 深度优先搜索

    /* 1026 逃跑的拉尔夫 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold       题目描述 Description 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆 ...