Window Pains
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2027   Accepted: 1025

Description

Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:

1 1 . .
1 1 . .
. . . .
. . . .
. 2 2 .
. 2 2 .
. . . .
. . . .
. . 3 3
. . 3 3
. . . .
. . . .
. . . .
4 4 . .
4 4 . .
. . . .
. . . .
. 5 5 .
. 5 5 .
. . . .
. . . .
. . 6 6
. . 6 6
. . . .
. . . .
. . . .
7 7 . .
7 7 . .
. . . .
. . . .
. 8 8 .
. 8 8 .
. . . .
. . . .
. . 9 9
. . 9 9

When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:

1 2 2 ?
1 2 2 ?
? ? ? ?
? ? ? ?
If window 4 were then brought to the foreground:
1 2 2 ?
4 4 2 ?
4 4 ? ?
? ? ? ?

. . . and so on . . . 
Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 3 components: 

  1. Start line - A single line: 
    START
  2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
  3. End line - A single line: 
    END

After the last data set, there will be a single line: 
ENDOFINPUT

Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

Output

For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

THESE WINDOWS ARE CLEAN

Otherwise, the output will be a single line with the statement: 
THESE WINDOWS ARE BROKEN

Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN

Source

——————————————————我是分割线——————————————————
拓扑排序,绝世好题。
前5分钟只想出来暴搜方法
后来想到可以记录每个方格能被哪些窗口盖住
转化成图论问题,拓扑排序求环
有环就是死机,否则就是好的。
真是的,如果不是事先知道这题是拓扑排序,我就只会写一发搜索剪枝去骗分了.......
读入写错了,调了半个钟头。
 /*
Problem:poj 2585
OJ: POJ
User: S.B.S.
Time: 0 ms
Memory: 700 kb
Length: 1991 b
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<vector>
#include<list>
#include<map>
#define maxn 10001
#define F(i,j,k) for(int i=j;i<k;i++)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define inf 0x7fffffff
#define maxm 2016
#define mod 1000000007
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int sc[][];
string cr[][];
bool vis[];
int in[];
bool g[][];
int t;
string s;
inline void init()
{
F(i,,)F(j,,) cr[i][j].erase();
F(k,,){
int i=(k-)/;
int j=(k-)%;
cr[i][j]+=char(k+'');
cr[i][j+]+=char(k+'');
cr[i+][j]+=char(k+'');
cr[i+][j+]+=char(k+'');
}
}
inline void input()
{
int i,j;
M(vis,);M(in,);M(g,);
t=;
int k;
F(i,,)F(j,,){
cin>>k;
sc[i][j]=k;
if(!vis[k]) t++;
vis[k]=true;
}
}
inline void build()
{
int a,b;
F(i,,)F(j,,)F(k,,cr[i][j].length())
{
if((!g[sc[i][j]][cr[i][j][k]-''])&&(sc[i][j]!=cr[i][j][k]-''))
{
g[sc[i][j]][cr[i][j][k]-'']=true;
in[cr[i][j][k]-'']++;
}
}
}
inline bool ok()
{
int i,j,k;
F(k,,t){
i=;
while(!vis[i]||(i<=&&in[i]>)) i++;
if(i>) return false;
vis[i]=false;
F(j,,){
if(vis[j]&&g[i][j]) in[j]--;
}
}
return true;
}
int main()
{
std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
init();
while(cin>>s)
{
if(s=="ENDOFINPUT") break;
input();
build();
if(ok()) cout<<"THESE WINDOWS ARE CLEAN"<<endl;
else cout<<"THESE WINDOWS ARE BROKEN"<<endl;
cin>>s;
}
return ;
}

poj 2585

poj 2585 Window Pains 解题报告的更多相关文章

  1. POJ 2585.Window Pains 拓扑排序

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1888   Accepted: 944 Descr ...

  2. poj 2585 Window Pains 暴力枚举排列

    题意: 在4*4的格子中有9个窗体,窗体会覆盖它之下的窗体,问是否存在一个窗体放置的顺序使得最后的结果与输入同样. 分析: 在数据规模较小且不须要剪枝的情况下能够暴力(思路清晰代码简单),暴力一般分为 ...

  3. POJ 2585 Window Pains 题解

    链接:http://poj.org/problem?id=2585 题意: 某个人有一个屏幕大小为4*4的电脑,他很喜欢打开窗口,他肯定打开9个窗口,每个窗口大小2*2.并且每个窗口肯定在固定的位置上 ...

  4. zoj 2193 poj 2585 Window Pains

    拓扑排序. 深刻体会:ACM比赛的精髓之处不在于学了某个算法或数据结构,而在于知道这个知识点但不知道这个问题可以用这个知识去解决!一看题目,根本想不到是拓扑排序.T_T...... #include& ...

  5. [POJ 2585] Window Pains 拓朴排序

    题意:你现在有9个2*2的窗口在4*4的屏幕上面,由于这9这小窗口叠放顺序不固定,所以在4*4屏幕上有些窗口只会露出来一部分. 如果电脑坏了的话,那么那个屏幕上的各小窗口叠放会出现错误.你的任务就是判 ...

  6. 【原创】leetCodeOj --- Sliding Window Maximum 解题报告

    天,这题我已经没有底气高呼“水”了... 题目的地址: https://leetcode.com/problems/sliding-window-maximum/ 题目内容: Given an arr ...

  7. Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)

     http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...

  8. POJ 3126 Prime Path 解题报告(BFS & 双向BFS)

    题目大意:给定一个4位素数,一个目标4位素数.每次变换一位,保证变换后依然是素数,求变换到目标素数的最小步数. 解题报告:直接用最短路. 枚举1000-10000所有素数,如果素数A交换一位可以得到素 ...

  9. 【原创】poj ----- 2376 Cleaning Shifts 解题报告

    题目地址: http://poj.org/problem?id=2376 题目内容: Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K ...

随机推荐

  1. 基于 Laravel 开发博客应用系列 —— 项目必备软件安装

    1.概述 通过本项目我们将会构建一个简单.清爽.优雅的博客系统,以及维护管理该博客的后台. 本项目源码公开在GitHub上:https://github.com/ChuckHeintzelman/l5 ...

  2. 全局设置axios发送cookie(axios 默认不发送cookie)

    import axios from 'axios' axios.defaults.withCredentials=true; 如图:

  3. R语言实战(八)广义线性模型

    本文对应<R语言实战>第13章:广义线性模型 广义线性模型扩展了线性模型的框架,包含了非正态因变量的分析. 两种流行模型:Logistic回归(因变量为类别型)和泊松回归(因变量为计数型) ...

  4. List元素为泛型时的注意事项

    最近的项目赶得非常紧,这节奏跟最近的天气一点也不搭调. 编码的过程,遇到一个关于List的小问题. 在调用List.add(E e)的时候范了一个小毛病,很自然地认为list中存储的是 E  对象的另 ...

  5. 【基本功】深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  6. OpenVAS漏洞扫描基础教程之连接OpenVAS服务

    OpenVAS漏洞扫描基础教程之连接OpenVAS服务 连接OpenVAS服务 当用户将OpenVAS工具安装并配置完后,用户即可使用不同的客户端连接该服务器.然后,对目标主机实施漏洞扫描.在本教程中 ...

  7. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

  8. [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)

    MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...

  9. BZOJ 2151 种树(循环链表)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2151 [题目大意] 在一个长度为n的数字环中挑选m个不相邻的数字使得其和最大 [题解] ...

  10. [BZOJ4832]抵制克苏恩

    [BZOJ4832]抵制克苏恩 思路: \(f[i][j][k][l]\)表示打了\(i\)次,血量为\(1\sim 3\)的随从有\(j,k,l\)个的期望.转移时注意避免重复. 源代码: #inc ...