T1 小 M 的作物

先从简化题目入手,考虑先去掉 \(c\) 的额外收益。然后尝试将所有作物种在 \(B\), 则目前得到了 \(\sum \limits_{i = 1} ^n b_i\) 的收益。

接下来我们将每一个作物 \(i\) 分成两个物品,收益分别为 \(a_i,-b_i\),且规定如果想要选收益为 \(a_i\) 的物品,则一定也要选收益为 \(-b_i\) 的物品。

于是现在成为了最大权闭合子图的裸题。

再加上 \(c\) 的额外收益。我们可以分别将每一个额外收益 \(j\),分成两个物品,收益分别为 \(c_{1, j},c_{2, j}\),且规定如果想要得到 \(c_{1, j}\) 则必须选完收益为 \(\{a_i|i \in K_j\}\) 的物品, 想要得到 \(c_{2, j}\) 则必须选完收益为 \(\{-b_i|i \in K_j\}\) 的物品。

会发现它仍然是一个最大权闭合子图的裸题。


T2 Strange Set

CF 2700 确实假的离谱。

\(A\) 序列已经给出了非常明确的依赖关系,且权值 \(B\) 固定,所以它是一道最大权闭合子图的裸题。

但是直接莽会发现因为边数在 \(A\) 中所有元素都相等的情况下会达到 \(n^2\) 级别,于是考虑优化边。

很显然有这样的关系,若 \(a_p=a_q=a_i(i \in [3, n], p, q \in [1, i - 1], p \neq q)\),则在依赖关系中,\(a_p, a_q\) 都依赖于 \(a_i\),且 \(a_p\) 依赖于 \(a_q\)。

那么直接按照题目给定的依赖关系连边会发现我们连了 \(a_p \to a_q, a_p \to a_i, a_q \to a_i\),但其实这和我们只连 \(a_p \to a_q, a_q \to a_i\) 是等价的。

也就是说对于每一个 \(a_i\),我们暴力枚举 \(a_i\) 的约数,让该数目前最晚出现的位置与当前位置连边即可。

转化到这里,仍然是一个最大权闭合子图的裸题。

Solution -「最大权闭合子图」做题随笔的更多相关文章

  1. [HEOI2017] 寿司餐厅 + 最大权闭合子图的总结

    Description 太长了自己看叭 点这里! Solution 先学一波什么叫最大权闭合子图. 先要明白什么是闭合子图,闭合子图就是给定一个有向图,从中选择一些点组成一个点集V.对于V中任意一个点 ...

  2. bzoj1497 [NOI2006]最大获利 最大权闭合子图

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...

  3. bzoj4873(最大权闭合子图)

    今天学了最大权闭合子图..然后找了这道题,发现完全不会..... 看了题解发现这种有诸如选了一个就一定要选另外的一些的限制又要求最优值的题有的可以转化成最大权闭合子图, 这个题我们首先想到不会选相交的 ...

  4. BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图

    链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当 ...

  5. HDU 5855 Less Time, More profit 最大权闭合子图

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5855 Less Time, More profit Time Limit: 2000/1000 MS ...

  6. 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)

    「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out   [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...

  7. 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价

    又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...

  8. BZOJ1391/LG4177 「CEOI2008」order 最大权闭合子图

    问题描述 BZOJ1391 LG4177 题解 最大权闭合子图,本质是最小割 在任务和机器中间的边之前权值设为INF,代表不可违背这条规则 本题的租借就相当于允许付出一定代价,违背某个规则,只需要把中 ...

  9. hiho 第119周 最大权闭合子图

    描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编 ...

随机推荐

  1. Hadoop(二)Hdfs基本操作

    HDFS HDFS由大量服务器组成存储集群,将数据进行分片与副本,实现高容错. 而分片最小的单位就是块.默认块的大小是64M. HDFS Cli操作 官网https://hadoop.apache.o ...

  2. 数据交换格式 JSON

    1. 什么是 JSON 概念 : JSON 的英文全称是 JavaScript ObjEct Notation, 即 "JavaScript 对象表示法" . 简单来讲 : JSO ...

  3. Java多线程—线程同步(单信号量互斥)

    JDK中Thread.State类的几种状态 线程的生命周期         线程的安全问题(同步与互斥) 方法一:同步代码块 多个线程的同步监视器(锁)必须的是同一把,任何一个类的对象都可以 syn ...

  4. IIS项目部署和发布

    VS2019如何把项目部署和发布 这里演示:通过IIS文件publish的方式部署到Windows本地服务器上 第一步(安装IIS) 1.在自己电脑上搜索Windows功能里的[启用或关闭Window ...

  5. Invocation failed Unexpected end of file from server java.lang.RuntimeException: Invocation failed Unexpected end of file from server

    Android studio 提交 push的时候报错. Invocation failed Unexpected end of file from serverjava.lang.RuntimeEx ...

  6. WPF 制作雷达扫描图

    实现一个雷达扫描图. 源代码在TK_King/雷达 (gitee.com),自行下载就好了 制作思路 绘制圆形(或者称之轮) 绘制分割线 绘制扫描范围 添加扫描点 具体实现 首先我们使用自定义的控件. ...

  7. Dockerfile指令与Docker-compose容器编排-搭建docker私有仓库

    目录 一:部署应用映射外部目录(持久化) 总结 二:迁移与备份(容器保存为镜像) 1.django执行gitee,项目提交到远端 2.其他操作 3.操作步骤 4.容器保存为镜像 5.把镜像打包成压缩包 ...

  8. python字符编码与文件操作

    目录 字符编码 字符编码是什么 字符编码的发展史 字符编码实际应用 编码与解码 乱码问题 python解释器层面 文件操作 文件操作简介 文件的内置方法 文件的读写模式 文件的操作模式 作业 答案 第 ...

  9. vue面试总结-2022

    1.vue生命周期及各周期得特点 beforCreate 特点: 初始化实例,不能使用data和methods.ref 示例 beforeCreate: function () { console.g ...

  10. Ubuntu,CenOS等Linux系统更改环境变量方法,以安装anaconda为例

    [环境配置的原因] 在windows系统下,很多软件的安装都需要设置环境变量,比如安装JAVA JDK.如果不安装环境变量,在非软件安装的目录下运行javac命令,将会报告"找不到文件&qu ...