一种使用CNN来提取特征的模型,通过CNN的filter的大小来获得不同的n-gram的信息,模型的结构如下所示:

输入

输入使用word2vec的50维词向量,加上 position embeddingposition embedding 是一句话的每个单词距离两个entity的距离,比如:

In the morning, the <e1>President</e1> traveled to <e2>Detroit</e2>

句子的长度为n,那么对于第i个单词,他的distance就是i-n, 所以distance的范围是 -n + 1 ~ n -1,position embedding是一个 \((2n-1) * m_d\) 的矩阵,\(m_d\)是embedding的维度。一句话中有两个entity,所以每个单词要计算两次distance。最后将word embedding position embedding拼接起来作为模型的输入,输入数据的shape是 \((m_e + 2m_d) * n\), \(m_e\)是embedding的维度, \(m_d\)是 position embedding的维度。

卷积

采用多个卷积核捕获更多的特征。如果卷积核的大小是 w, 那么,会有权重矩阵 \(\mathbf{f}=\left[\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{w}\right]\), f是卷积核,\(f_i\)是大小和\(x_i\)一致的weight。

\[s_{i}=g\left(\sum_{j=0}^{w-1} \mathbf{f}_{j+1}^{\top} \mathbf{x}_{j+i}^{\top}+b\right)
\]

模型中会有多个不同大小的卷积核, 每种卷积核最后会经过max pooling,最后得到的向量再输入到linear层中

\[p_{\mathbf{f}}=\max \{\mathbf{s}\}=\max \left\{s_{1}, s_{2}, \ldots s_{n-w+1}\right\}
\]

s是一个大小为w的卷积核在一句话上经过卷积得到的各个位置的score, 池化操作就是找到这句话中的最大的score。往往同样大小的卷积核会有n个,那么这些卷积核的池化结果就是长度为n的张量。也就是输出的size是(batch, n),如果有m种大小不同的卷积核,则把所有卷积核的输出拼到一起。也就是(batch, n * m)

分类

最后接入到全连接层进行分类

关系抽取--Relation Extraction: Perspective from Convolutional Neural Networks的更多相关文章

  1. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  2. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

  3. 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记

    论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...

  4. Convolutional Neural Networks卷积神经网络

    转自:http://blog.csdn.net/zouxy09/article/details/8781543 9.5.Convolutional Neural Networks卷积神经网络 卷积神经 ...

  5. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  6. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  7. Notes on Convolutional Neural Networks

    这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正, ...

  8. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  9. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

随机推荐

  1. jsp获取单选按钮组件的值

    jsp获取单选按钮组件的值 1.首先,写一个带有单选按钮组件的前台页 1 <%@ page language="java" contentType="text/ht ...

  2. WAF对抗-安全狗(联合查询篇)

    WAF对抗-安全狗(联合查询篇) 实验环境 网站安全狗APACHE版V4.0.靶场:dvwa 为了方便对比可以在这个在线靶场申请一个dvwa https://www.vsplate.com/ mysq ...

  3. 【MySQL】从入门到掌握1-一些背景知识

    这个系列的文章带各位学习MySQL数据库. 不需要任何基础知识,便可以学习. 学习MySQL对学习Java的JDBC有很大的好处! 想要开发游戏服务器,那么学习MySQL也是必不可少的. 学习完本系列 ...

  4. Mybatis-Plus使用@TableField实现自动填充日期

    一.前言 我们在日常开发中经常使用ORM框架,比如Mybatis.tk.Mybatis.Mybatis-Plus.不过最广泛的还是Mybatis-Plus,我们的一些表,都会有创建时间.更新时间.创建 ...

  5. Qt编程选择QtCreator还是Qt+VS

    结论:推荐QtCreator 对于一个新手而言,基本体会如下: Qt Creator Qt Creator优势 可以实现Ui和代码无缝切换.(VS不行) 对于汉字的支持更好 提示功能做的更好. 比如: ...

  6. Neo4j在linux上的安装与Springboot的集成

    Neo4j在linux上的安装与Springboot的集成 在linux安装: 前提:安装配置好java环境 1.下载neo4j 官方社区版下载地址:https://neo4j.com/downloa ...

  7. 十一章 Kubernetes的服务发现插件--coredns

    1.前言 简单来说,服务发现就是服务(应用)之间相互定位的过程: 服务发现并非云计算时代独有的,传统的单体架构时代也会用到,以下应用场景更加需要服务发现: 服务(应用)的动态性强: 服务(应用)更新发 ...

  8. KingbaseES R3 集群主备切换信号量(semctl)错误故障分析案例

    案例说明: 某项目KingbaseES R3 一主一备流复制集群在主备切换测试中出现故障,导致主备无法正常切换:由于bm要求,数据库相关日志无法从主机中获取,只能在现场进行分析:通过对比主备切换时的时 ...

  9. KingbaseES函数如何返回结果集

    函数返回值一般是某一类型值,如int,varchar,date等,返回结果集时就需要用到setof语法. 创建数据 create table class(id number primary key, ...

  10. 字符类数据类型和oracle字符类型的区别

    为兼容Oracle的数据类型,KingbaseES扩展了Oracle的NUMBER.VARCHAR2.CHAR(n)和DATE类型.该措施使得移植Oracle的Create Table等DDL语句时, ...