知识点简单总结——BSGS与EXBSGS

BSGS

给出 $ A,B,C,(A,C)=1 $ ,要你求最小的 $ x $ ,使得 $ A^x \equiv B(mod \ C) $ 。

在数论题中经常会看见这样的式子,而它的用处确实也不少,例如:

指标

。。。想不到了(被打)

解题思路

众所周知 $ A^{x} \equiv A^{x \ mod \ \phi (C) }(mod \ C) $

所以考虑暴力枚举就可以。

但是我们显然要考虑一个更快的。

分块就好了。

设块大小 $ m $ ,预处理出 $ A^{1,2,...,m-1} $ 扔进哈希表。

剩下的应该不难了,经典分块一般的操作。

枚举每一个 $ i $ ,左式 $ =A^{im} $ 时哈希表里是否存在一个值 $ z $ 使得 $ A^{im}*z \equiv B(mod \ C) $ ,存在的话就返回该最小答案。

EXBSGS

同上,唯一变化就是不保证 $ (A,C)=1 $ 。

既然它不给保证那就我们自己让它转化成 $ (A,C)=1 $ 。

对于 $ A^x \equiv B(mod \ C),(A,C)=d $ ,直接全都除以 $ d $ ,

(如果 $ B \ mod \ d \neq 0 $ 直接无解)

变成 $ (A/d)*A^{x-1} \equiv B/d(mod \ C/d) $ 。

此时仍然无法保证 $ A $ 与 $ C/d $ 互质,

那么就重复以上操作直到互质。

然后就没了。

知识点简单总结——BSGS与EXBSGS的更多相关文章

  1. 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)

    知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...

  2. 知识点简单总结——Pollard-Rho算法

    知识点简单总结--Pollard-Rho算法 MillerRabin算法 用于对较大(int64)范围内的数判定质数. 原理:费马小定理,二次探测定理. 二次探测定理:若 $ p $ 为奇素数且 $ ...

  3. 知识点简单总结——minmax容斥

    知识点简单总结--minmax容斥 minmax容斥 好像也有个叫法叫最值反演? 就是这样的一个柿子: \[max(S) = \sum\limits_{ T \subseteq S } min(T) ...

  4. 知识点简单总结——Lyndon分解

    知识点简单总结--Lyndon分解 Lyndon串 定义:一个字符串的最小后缀就是整个串本身. 等效理解:这个串为其所有循环表示中最小的. Lyndon分解 定义:将字符串分割为 $ s_{1} s_ ...

  5. BSGS与exBSGS学习笔记

    \(BSGS\)用于解决这样一类问题: 求解\(A^x ≡B(modP)\)的最小\(x\),其中\(P\)为质数. 这里我们采用分块的方法,把\(x\)分解为\(i *t-b\)(其中\(t\)是分 ...

  6. XPath知识点简单总结(思维导图)

    XPath是一种用于在XML文档中查找信息的语言,其对HTML也有很好的支持,所以在网络爬虫中可用于解析HTML文档.参考链接. 下图是XPath知识点的简单总结成思维导图:

  7. 省选算法学习-BSGS与exBSGS与二次剩余

    前置知识 扩展欧几里得,快速幂 都是很基础的东西 扩展欧几里得 说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象 翡蜀定理 方程$ax+by=gcd(a,b)$ ...

  8. BSGS和EXBSGS

    也许更好的阅读体验 \(Description\) 给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\) \(BSGS\) \(BS ...

  9. 「算法笔记」BSGS 与 exBSGS

    一.离散对数 给定 \(a,b,m\),存在一个 \(x\),使得 \(\displaystyle a^x\equiv b\pmod m\) 则称 \(x\) 为 \(b\) 在模 \(m\) 意义下 ...

随机推荐

  1. Solution -「CF 1132G」Greedy Subsequences

    \(\mathcal{Description}\)   Link.   定义 \(\{a\}\) 最长贪心严格上升子序列(LGIS) \(\{b\}\) 为满足以下两点的最长序列: \(\{b\}\) ...

  2. Solution -「CF 1361E」James and the Chase

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的有向弱连通图.称一个点是"好点"当且仅当从该点出发,不存在到同一点 ...

  3. head 插件 Content-Type header [application/x-www-form-urlencoded] is not supported

    { "error": "Content-Type header [application/x-www-form-urlencoded] is not supported& ...

  4. PHP7.x环境下安装redis扩展

    注:以下介绍的安装方式为PHP的安装路径为/usr/local/php,如果你的服务器上PHP的安装目录不一致请按实际情况处理. 首先下载PHP7的redis扩展 wget https://githu ...

  5. Spring常用配置使用示例

    上篇介绍了Spring配置的基本情况,本篇介绍Spring常用配置具体如何使用.关于基础的配置,比如Configuration之类的就不示例,主要示例相对用的比较多同时可能比较复杂的标签或属性. 1) ...

  6. GoJS 使用笔记

    作为商业软件,GoJs很容易使用,文档也很完备,不过项目中没有时间系统地按照文档学习,总是希望快速入门使用,所以将项目中遇到的问题精简一下,希望对后来者有些帮助. 开始使用 这里先展示一个最简单的例子 ...

  7. 攻防世界Web_favorite_number

    题目: 解题思路: 直接给php源码,代码审计. 这里需要通过POST方法传递参数stuff,且stuff是一组数组,给了一组数组array['admin','user'] if条件中,需要stuff ...

  8. Seastar 教程(一)

    介绍 我们在本文档中介绍的Seastar是一个 C++ 库,用于在现代多核机器上编写高效的复杂服务器应用程序. 传统上,用于编写服务器应用程序的编程语言库和框架分为两个不同的阵营:专注于效率的阵营和专 ...

  9. 截图工具snipaste

    下载地址: https://zh.snipaste.com/download.html 使用: 按F1截图,截图后按F3悬浮

  10. 一、ES6基础

    一.ECMAScript和JavaScript关系 JavaScript 的创造者 Netscape 公司,决定将 JavaScript 提交给标准化组织 ECMA,希望这种语言能够成为国际标 准,但 ...