UVA 10405 Longest Common Subsequence (dp + LCS)
Problem C: Longest Common Subsequence
Sequence 1: 














Sequence 2: 














Given two sequences of characters, print the length of the longest common subsequence of both sequences. For example, the longest common subsequence of the following two sequences:
abcdgh
aedfhr
is adh of length 3.
Input consists of pairs of lines. The first line of a pair contains the first string and the second line contains the second string. Each string is on a separate line and consists of at most 1,000 characters
For each subsequent pair of input lines, output a line containing one integer number which satisfies the criteria stated above.
Sample input
a1b2c3d4e
zz1yy2xx3ww4vv
abcdgh
aedfhr
abcdefghijklmnopqrstuvwxyz
a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0
abcdefghijklmnzyxwvutsrqpo
opqrstuvwxyzabcdefghijklmn
Output for the sample input
4
3
26
14
题意:给定两个序列,求最长公共子序列。
思路:dp中的LCS问题。。裸的很水。状态转移方程为
字符相同时: d[i][j] = d[i - 1][j - 1] + 1,不同时:d[i][j] = max(d[i - 1][j], d[i][j - 1])
代码:
#include <stdio.h>
#include <string.h> char a[1005], b[1005];
int d[1005][1005], i, j; int max(int a, int b) {
return a > b ? a : b;
}
int main() {
while (gets(a) != NULL) {
gets(b);
memset(d, 0, sizeof(d));
int lena = strlen(a);
int lenb = strlen(b);
for (i = 1; i <= lena; i ++)
for (j = 1; j <= lenb; j ++) {
if (a[i - 1] == b[j - 1]) {
d[i][j] = d[i - 1][j - 1] + 1;
}
else {
d[i][j] = max(d[i - 1][j], d[i][j - 1]);
}
}
printf("%d\n", d[lena][lenb]);
}
return 0;
}
UVA 10405 Longest Common Subsequence (dp + LCS)的更多相关文章
- UVA 10405 Longest Common Subsequence --经典DP
最长公共子序列,经典问题.算是我的DP开场题吧. dp[i][j]表示到s1的i位置,s2的j位置为止,前面最长公共子序列的长度. 状态转移: dp[i][j] = 0 ...
- UVA 10405 Longest Common Subsequence
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=16&p ...
- Longest Common Subsequence (DP)
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Longest common subsequence(LCS)
问题 说明该问题在生物学中的实际意义 Biological applications often need to compare the DNA of two (or more) different ...
- [UVa OJ] Longest Common Subsequence
This is the classic LCS problem. Since it only requires you to print the maximum length, the code ca ...
- [Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm
''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...
随机推荐
- 【转】全面了解Mysql中的事务
为什么要有事务? 事务广泛的运用于订单系统.银行系统等多种场景.如果有以下一个场景:A用户和B用户是银行的储户.现在A要给B转账500元.那么需要做以下几件事: 1. 检查A的账户余额>500元 ...
- WC2018伪题解
NOIP分数过低的场外选手,一个月之后才有幸膜到这套卷子.感觉题目质量很不错啊,可惜了T1乱搞可过,T2题目出锅非集训队员没有通知到,导致风评大幅被害. 感觉Cu的话随手写两个暴力就稳了,Ag的话T3 ...
- []APC001
题目质量都好高啊... A:求一个是$X$的倍数但不是$Y$的倍数的数,无解输出$-1$ 无解就是$Y|X$,否则输出$X$即可 B:给定$a_{1\cdots n},b_{1\cdots n}$,求 ...
- ACM -- 算法小结(九)DP之Humble numbers
DP -- Humble numbers //一开始理解错题意了,题意是是说一些只有唯一一个质因数(质因数只包括2,3,5,7)组成的数组,请找出第n个数是多少 //无疑,先打表,否则果断 ...
- 思科DCHP解决方案
DHCP功能平时用的不算少,而且本人的几乎所有的DHCP功能都是在交换机上实现的,虽然也可以通过PC实现,而且PC的DHCP Server功能还更完善,比如可以不受DHCP作用域的限制.IP分配情况直 ...
- windows2008服务器连接Oracle慢的问题。
昨天发布程序到2008服务器的IIS,从Sql Server数据库取数没问题,但是从Oracle数据库取数,非常的慢,同样的程序在2003服务器上没问题,本机也没问题.一开始怀疑是这台机器有问题,后来 ...
- nodejs 导入导出模块module.exports向外暴露多个模块 require导入模块
.moudel.exports 导出模块 导出单个模块 // user.js moudel.exports = 函数名或者变量名: //app.js 导入 require('user.js') 当然. ...
- 解决数据库 Table 'content_tags' is marked as crashed and should be repaired 表损坏问题
今天突然网站TAG页面打不开了,打开debug,发现提示 Table 'content_tags' is marked as crashed and should be repaired 这样的错误 ...
- Circuit provides reference for multiple ADCs
The achievable accuracy for systems with multiple ADCs depends directly on the reference voltages ap ...
- 开源Word读写组件DocX介绍与入门
来源:http://i.cnblogs.com/EditPosts.aspx?opt=1 读写Offic格式的文档,大家多少都有用到,可能方法也很多,组件有很多.这里不去讨论其他方法的优劣,只是向大家 ...