4596: [Shoi2016]黑暗前的幻想乡

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 324  Solved: 187

Description

四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖
怪涌入了幻想乡,扰乱了幻想乡昔日的秩序。但是幻想乡的建制派妖怪(人类)
博丽灵梦和八云紫等人整日高谈所有妖怪平等,幻想乡多元化等等,对于幻想乡
目前面临的种种大问题却给不出合适的解决方案。
风间幽香是幻想乡里少有的意识到了问题的严重性的大妖怪。她这次勇敢的
站了出来参加幻想乡大选。提出包括在幻想乡边境建墙(并让人类出钱),大力
开展基础设施建设挽回失业率等一系列方案,成为了大选年出人意料的黑马并顺
利的当上了幻想乡的大统领。
幽香上台以后,第一项措施就是要修建幻想乡的公路。幻想乡有 N 个城市,
之间原来没有任何路。幽香向选民承诺要减税,所以她打算只修 N- 1 条路将
这些城市连接起来。但是幻想乡有正好 N- 1 个建筑公司,每个建筑公司都想
在修路的过程中获得一些好处。
虽然这些建筑公司在选举前没有给幽香钱,幽香还是打算和他们搞好关系,
因为她还指望他们帮她建墙。所以她打算让每个建筑公司都负责一条路来修。
每个建筑公司都告诉了幽香自己有能力负责修建的路是哪些城市之间的。所
以幽香打算选择 N-1 条能够连接幻想乡所有城市的边,然后每条边都交给一
个能够负责该边的建筑公司修建,并且每个建筑公司都恰好修一条边。
幽香现在想要知道一共有多少种可能的方案呢?两个方案不同当且仅当它
们要么修的边的集合不同,要么边的分配方式不同。

Input

第一行包含一个正整数 N(N<=17), 表示城市个数。
接下来 N-1 行,其中第 i行表示第 i个建筑公司可以修建的路的列表:
以一个非负数mi 开头,表示其可以修建 mi 条路,接下来有mi 对数,
每对数表示一条边的两个端点。其中不会出现重复的边,也不会出现自环。

Output

仅一行一个整数,表示所有可能的方案数对 10^9 + 7 取模的结果。

Sample Input

4
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2

Sample Output

17

HINT

Source

【分析】

  每个人恰好一条边什么的,容斥即可。

  就是枚举有1个人没有边,2个人没有边。。。。

  容斥完之后就能保证每个人恰好一条也不会多,因为n-1=n-1。

  后面就是矩阵树定理,这里直接用逆元了,还不会lhm大神说的不用除法的方法orz。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 1000000007 int m[],a[][]; struct node {int x,y;}t[][]; int qpow(int x,int b)
{
int ans=;
while(b)
{
if(b&) ans=1LL*ans*x%Mod;
x=1LL*x*x%Mod;
b>>=;
}
return ans;
} int gauss(int n)
{
int ans=;
for(int i=;i<=n;i++)
{
int t=i;
for(int j=i+;j<=n;j++) if(a[j][i]>a[t][i]) t=j;
if(a[t][i]==) return ;
if(t!=i)
{
ans=-ans;
for(int j=;j<=n;j++) swap(a[i][j],a[t][j]);
}
int ny=qpow(a[i][i],Mod-)%Mod;
for(int j=i+;j<=n;j++)
{
int nw=1LL*a[j][i]*ny%Mod;
for(int k=;k<=n;k++) a[j][k]-=1LL*a[i][k]*nw%Mod,a[j][k]=(a[j][k]%Mod+Mod)%Mod;
}
}
for(int i=;i<=n;i++) ans=1LL*ans*a[i][i]%Mod;
ans=(ans+Mod)%Mod;
return ans;
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d",&m[i]);
for(int j=;j<=m[i];j++) scanf("%d%d",&t[i][j].x,&t[i][j].y);
}
int ans=;
for(int i=;i<(<<n-);i++)
{
memset(a,,sizeof(a));
int sm=;
for(int j=;j<n;j++) if((<<j-)&i)
{
sm++;
for(int k=;k<=m[j];k++)
{
a[t[j][k].x][t[j][k].x]++;
a[t[j][k].y][t[j][k].y]++;
a[t[j][k].x][t[j][k].y]--;
a[t[j][k].y][t[j][k].x]--;
}
}
if((n--sm)&) ans-=gauss(n-);
else ans+=gauss(n-);
ans=(ans%Mod+Mod)%Mod;
}
printf("%d\n",ans);
return ;
}

2017-04-16 19:07:33

【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)的更多相关文章

  1. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理

    题目描述 给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模. 输入 第一行包含一个正整数 N(N<=17) ...

  2. luoguP4336 [SHOI2016]黑暗前的幻想乡 容斥原理 + 矩阵树定理

    自然地想到容斥原理 然后套个矩阵树就行了 求行列式的时候只有换行要改变符号啊QAQ 复杂度为\(O(2^n * n^3)\) #include <cstdio> #include < ...

  3. [luogu3244 SHOI2016] 黑暗前的幻想乡(容斥原理+矩阵树定理)

    传送门 Description 给出 n 个点和 n−1 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 109+7 取模. Input 第一行包含一个正整数 N(N& ...

  4. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...

  5. 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

    [BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...

  6. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  7. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

随机推荐

  1. LintCode 395: First Will Win 2

    LintCode 395: First Will Win 2 题目描述 有 n 个不同价值的硬币排成一条线.两个参赛者轮流从左边依次拿走 1 或 2 个硬币,直到没有硬币为止.计算两个人分别拿到的硬币 ...

  2. 【最大流】【CODEVS】1993 草地排水

    [算法]网络流-最大流(dinic) [题解]http://www.cnblogs.com/onioncyc/p/6496532.html #include<cstdio> #includ ...

  3. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  4. [HNOI2009]有趣的数列 题解(卡特兰数)

    [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满 ...

  5. Tinyos Makerules解读

    Makerules 文件解读 位于/opt/tinyos-2.1.2/support/make #-*-Makefile-*- vim:syntax=make #$Id: Makerules,v 1. ...

  6. 35 - 并发编程-GIL-多进程

    目录 1 GIL 1.1 为什么会有GIL 1.2 GIL与thread lock 1.3 个人总结 2 multiprocessing模块 2.1 Process类 2.2 Process类的方法 ...

  7. PXC加入新节点避免SST时grastate.dat文件内容的修改问题

    PXC加入新节点避免SST时grastate.dat文件内容的修改问题 在主从同步完成并关闭实例后,需要修改grastate.dat中的seqno:到底应该填已经执行过最后的XID号(Executed ...

  8. Android 开发笔记(一) 按钮事件调用Activity

    UI创建按钮及事件 Button mEmailSignInButton = (Button) findViewById(R.id.email_sign_in_button);mEmailSignInB ...

  9. 《深入理解Java虚拟机》笔记--第二章、Java内存区域与内存溢出异常

    Java程序员把内存的控制权交给了Java虚拟机.在Java虚拟机内存管理机制的帮助下,程序员不再需要为每一个new操作写对应的delete/free代码,而且不容易出现内存泄露和溢出. 虚拟机在执行 ...

  10. centos7安装Python3的过程中会和Python2.7版本冲突导致yum版本比对应,致使yum不能使用的问题。

    centos7安装Python3的过程中会和Python2.7版本冲突导致yum版本比对应,致使yum不能使用的问题. 原因:yum调用Python,启动程/usr/bin/yum就是一个python ...