BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur


Description

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ’s paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

Input

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000). The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

Output

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

Sample Input

7 10

1 2

3 1

2 5

2 4

3 7

3 5

3 6

6 5

7 2

4 7

Sample Output

6


给你一张有向图图,有一次走反向边的机会

然后问你从1出发回到1最多经过多少个点


首先想到的是tarjan缩点,一个强连通分量的大小显然只要进入了就可以全部吃下来

然后我们得到了一个DAG

考虑在这上面走一圈,有一条边可以反向做多能经过多少边

首先我们显然不能枚举那一个边是反向的,但是我们可以排除这个边随便考虑一下

我们正反建图,然后发现对于一条边(u−&gt;v)" role="presentation" style="position: relative;">(u−>v)(u−>v),把这条边反向的贡献就是d[1−&gt;v]正向+d[u−&gt;1]反向" role="presentation" style="position: relative;">d[1−>v]正向+d[u−>1]反向d[1−>v]正向+d[u−>1]反向,然后我们就分别在正反的图上进行DP,也可以说是跑最长路

然后最后统计贡献就好了


tips:一定在DP的时候吧初值设为-INF,否则累计的时候会出事情,要考虑无法到达的情况


#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define pi pair<int,int>
#define INF 0x3f3f3f3f
int cnt_scc,tot=0,n,m;
int dfn[N],low[N],vis[N]={0};
int siz[N]={0},head[N]={0};
int bel[N];
struct Edge{int u,v,next;}E[N<<1];
stack<int> s;
void add(int u,int v){
E[++tot]=(Edge){u,v,head[u]};
head[u]=tot;
}
int tip=0;
void tarjan(int u){
dfn[u]=low[u]=++tip;
vis[u]=1;
s.push(u);
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(!dfn[v])tarjan(v),low[u]=min(low[u],low[v]);
else if(vis[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
cnt_scc++;
while(s.top()!=u){
bel[s.top()]=cnt_scc;
vis[s.top()]=0;
s.pop();
}
vis[s.top()]=0;
bel[s.top()]=cnt_scc;
s.pop();
}
}
map<pi,int> mp;
struct DAG{
Edge E[N<<1];
bool inq[N];
int head[N],tot;
int dp[N],ru[N];
DAG(){
memset(head,0,sizeof(head));
for(int i=0;i<N;i++)dp[i]=-INF;
tot=0;
}
void add(int u,int v){
E[++tot]=(Edge){u,v,head[u]};
head[u]=tot;
}
void solve(){
queue<int> q;
q.push(bel[1]);
dp[bel[1]]=0;
while(!q.empty()){
int u=q.front();q.pop();
inq[u]=0;
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(dp[v]<dp[u]+siz[v]){
dp[v]=dp[u]+siz[v];
if(!inq[v])q.push(v),inq[v]=1;
}
}
}
}
}g1,g2;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v;scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);
for(int i=1;i<=n;i++)siz[bel[i]]++;
for(int i=1;i<=tot;i++){
int u=bel[E[i].u],v=bel[E[i].v];
if(u==v)continue;
if(mp[(pi){u,v}]||mp[(pi){v,u}])continue;
g1.add(u,v);
g2.add(v,u);
mp[(pi){u,v}]=mp[(pi){v,u}]=1;
}
g1.solve();
g2.solve();
int ans=0;
for(int i=1;i<=tot;i++){
int u=bel[E[i].u],v=bel[E[i].v];
ans=max(ans,g1.dp[v]+g2.dp[u]);
}
ans+=siz[bel[1]];
printf("%d",ans);
return 0;
}

BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*的更多相关文章

  1. bzoj3887: [Usaco2015 Jan]Grass Cownoisseur

    题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...

  2. [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa

    先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...

  3. BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]

    首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...

  4. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  5. [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp

    [Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...

  6. BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP

    BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...

  7. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  8. BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  9. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

随机推荐

  1. python 匹配中文和英文

    在处理文本时经常会匹配中文名或者英文word,python中可以在utf-8编码下方便的进行处理. 中文unicode编码范围[\u4e00-\u9fa5] 英文字符编码范围[a-zA-Z] 此时匹配 ...

  2. session判断重复提交

    import javax.servlet.http.HttpServletRequest; /** * @author: jiang * @Date: 2019/2/19 09:37 * @Descr ...

  3. LeetCode第[78]题(Java):Subsets(求子集)扩展——第[90]题:Subsets 2

    题目:矩阵置0 难度:Easy 题目内容:   Given a set of distinct integers, nums, return all possible subsets (the pow ...

  4. 二十七 Python分布式爬虫打造搜索引擎Scrapy精讲—通过自定义中间件全局随机更换代理IP

    设置代理ip只需要,自定义一个中间件,重写process_request方法, request.meta['proxy'] = "http://185.82.203.146:1080&quo ...

  5. 原生javascript-日期年,月,日联动选择

    在线例子:http://lgy.1zwq.com/dateSwitch/ 月份的判定,由于涉及到过多了判定条件,如果用if else会大大降低性能,建议用switch 语法 getDays:funct ...

  6. UML类图几种关系

    (转自:http://www.open-open.com/lib/view/open1328059700311.html) 在UML类图中,常见的有以下几种关系: 泛化(Generalization) ...

  7. PHP获取随机数的函数rand()和mt_rand()

    rand()函数用户获取随机数,具体用法如下: rand()可以设置0个参数或者两个参数,如rand($min,$max),$min表示从XX开始取值,$max表示最大只能为XX 例如: <?p ...

  8. Confluence 安装

    一.事前准备 1.jdk安装:5.8.10的jdk至少是7,其中7中还有很多官网是不建议的,这儿选中jdk-7u79 二.安装Confluence 双击atlassian-confluence-5.8 ...

  9. 在Vim中使用gtags

    之前一直使用vim+ctags+cscope来弄c的代码,最近看同事使用gtags,觉得在搜索方面要高级很多,网上大多都是emacs+gtags的资料,而vim的则比较少,这里搞通了之后,做个记录. ...

  10. 如何让PPT播放时仅电脑显示备注页,而投影仪不显示

    完全可以!第一步:在电脑上右键点击桌面选择属性,进入显示属性选着设置,点击2号屏(前提已连接投影仪或第2显示器),并且在“将WINDOS桌面扩展到改监视器上”(这个关键)前面打钩,且自主选择分辨率,应 ...