BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur


Description

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ’s paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

Input

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000). The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

Output

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

Sample Input

7 10

1 2

3 1

2 5

2 4

3 7

3 5

3 6

6 5

7 2

4 7

Sample Output

6


给你一张有向图图,有一次走反向边的机会

然后问你从1出发回到1最多经过多少个点


首先想到的是tarjan缩点,一个强连通分量的大小显然只要进入了就可以全部吃下来

然后我们得到了一个DAG

考虑在这上面走一圈,有一条边可以反向做多能经过多少边

首先我们显然不能枚举那一个边是反向的,但是我们可以排除这个边随便考虑一下

我们正反建图,然后发现对于一条边(u−&gt;v)" role="presentation" style="position: relative;">(u−>v)(u−>v),把这条边反向的贡献就是d[1−&gt;v]正向+d[u−&gt;1]反向" role="presentation" style="position: relative;">d[1−>v]正向+d[u−>1]反向d[1−>v]正向+d[u−>1]反向,然后我们就分别在正反的图上进行DP,也可以说是跑最长路

然后最后统计贡献就好了


tips:一定在DP的时候吧初值设为-INF,否则累计的时候会出事情,要考虑无法到达的情况


#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define pi pair<int,int>
#define INF 0x3f3f3f3f
int cnt_scc,tot=0,n,m;
int dfn[N],low[N],vis[N]={0};
int siz[N]={0},head[N]={0};
int bel[N];
struct Edge{int u,v,next;}E[N<<1];
stack<int> s;
void add(int u,int v){
E[++tot]=(Edge){u,v,head[u]};
head[u]=tot;
}
int tip=0;
void tarjan(int u){
dfn[u]=low[u]=++tip;
vis[u]=1;
s.push(u);
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(!dfn[v])tarjan(v),low[u]=min(low[u],low[v]);
else if(vis[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
cnt_scc++;
while(s.top()!=u){
bel[s.top()]=cnt_scc;
vis[s.top()]=0;
s.pop();
}
vis[s.top()]=0;
bel[s.top()]=cnt_scc;
s.pop();
}
}
map<pi,int> mp;
struct DAG{
Edge E[N<<1];
bool inq[N];
int head[N],tot;
int dp[N],ru[N];
DAG(){
memset(head,0,sizeof(head));
for(int i=0;i<N;i++)dp[i]=-INF;
tot=0;
}
void add(int u,int v){
E[++tot]=(Edge){u,v,head[u]};
head[u]=tot;
}
void solve(){
queue<int> q;
q.push(bel[1]);
dp[bel[1]]=0;
while(!q.empty()){
int u=q.front();q.pop();
inq[u]=0;
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(dp[v]<dp[u]+siz[v]){
dp[v]=dp[u]+siz[v];
if(!inq[v])q.push(v),inq[v]=1;
}
}
}
}
}g1,g2;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v;scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);
for(int i=1;i<=n;i++)siz[bel[i]]++;
for(int i=1;i<=tot;i++){
int u=bel[E[i].u],v=bel[E[i].v];
if(u==v)continue;
if(mp[(pi){u,v}]||mp[(pi){v,u}])continue;
g1.add(u,v);
g2.add(v,u);
mp[(pi){u,v}]=mp[(pi){v,u}]=1;
}
g1.solve();
g2.solve();
int ans=0;
for(int i=1;i<=tot;i++){
int u=bel[E[i].u],v=bel[E[i].v];
ans=max(ans,g1.dp[v]+g2.dp[u]);
}
ans+=siz[bel[1]];
printf("%d",ans);
return 0;
}

BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*的更多相关文章

  1. bzoj3887: [Usaco2015 Jan]Grass Cownoisseur

    题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...

  2. [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa

    先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...

  3. BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]

    首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...

  4. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  5. [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp

    [Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...

  6. BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP

    BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...

  7. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  8. BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  9. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

随机推荐

  1. 测试php语句执行时间

    $start = microtime(true); $elapsed = microtime(true) - $start; echo "That took $elapsed seconds ...

  2. jmeter-对响应数据进行unicode转码

    1,请求接口成功后,返回数据为unicode编码,查看不方便

  3. PIL中文文档

    (0)http://hereson.iteye.com/blog/2224334 (1)http://blog.csdn.net/yjwx0018/article/details/52852067 ( ...

  4. ASP.NET网站部署CentOS操作笔记

    ASP.NET 网站部署 Linux 服务器简要笔记 Mono 刚问世的时候,跑起来确实有很多不可预估的 BUG,但是被微软收购后推出的几个版本相对来说稳定了许多. 这几天使用了一个 n 年前用 We ...

  5. day20 project+查看新闻列表 + 点赞 + 图片验证码 + 评论和多级评论 + 后台管理 + webSocket + kindEditor

    Day20回顾: 1. 请求生命周期 2. 中间件 md = [ "file_path.classname" ] process_request[可有可无] process_res ...

  6. ubuntu14.04 改变系统默认Python解释器

    今天刚安装了anaconda,摸索了一阵子,现做个相关记录. 虽然安装的时候,会通知你是否加入环境变量(加到.bashrc尾部),但是调用的解释器仍然是系统自带默认的Python2.7.6,我们在/r ...

  7. SHOW INNODB STATUS 探秘

    [InnoDB系列] -- SHOW INNODB STATUS 探秘 SHOW INNODB STATUS 探秘 转载:http://imysql.com/2008_05_22_walk_throu ...

  8. PHP---初探PHP

    初探PHP 虽然说前后端分离,但作为前端还是要跟数据打交道的,所以对后台语言的了解还是很有必要的.今天要学的就是PHP. 什么是PHP? PHP(外文名:PHP: Hypertext Preproce ...

  9. 浅谈HTML中的块级元素和内联元素

    一.基本概念 1.块级元素(block element):一般都从新行开始占据一定的矩形空间,可以设置其宽.高属性来改变矩形的大小.一般情况下块级元素可以包含内联元素和其它块级元素,但也有特殊如for ...

  10. Mysql加载配置默认路径

    查看命令 mysqld --verbose --help|grep "Default options" -n1 输出结果 11-12:Default options are rea ...