HDU 1521 排列组合 (母函数)
Problem Description
有n种物品,并且知道每种物品的数量。要求从中选出m件物品的排列数。例如有两种物品A,B,并且数量都是1,从中选2件物品,则排列有"AB","BA"两种。
Input
每组输入数据有两行,第一行是二个数n,m(1<=m,n<=10),表示物品数,第二行有n个数,分别表示这n件物品的数量。
Output
对应每组数据输出排列数。(任何运算不会超出2^31的范围)
Sample Input`
2 2
1 1`
Sample Output
2
首先补充一下母函数的基本知识:
对于某个数列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。母函数主要应用于求解组合数、排列数、递推关系通项公式等。
对于这个多项式乘法:

可以得出的结论有:
x的系数是a1,a2,…an的单个组合的全体
x^2的系数是a1,a2,…an的两个组合的全体
·······
n .x^n的系数是a1,a2,….an的n个组合的全体(只有1个)进一步可以得到:

我们定义母函数
对于序列a0,a1,a2,…构造一函数:

称函数G(x)是序列a0,a1,a2,…的母函数。
第一种例子分析:
有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?
考虑用母函数来解决这个问题:
我们假设x表示砝码,x的指数表示砝码的重量,这样:
1个1克的砝码可以用函数1+1*x^1表示,
1个2克的砝码可以用函数1+1*x^2表示,
1个3克的砝码可以用函数1+1*x^3表示,
1个4克的砝码可以用函数1+1*x^4表示,
我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就有一个质量为2的砝码。
那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。
所以这里1+1x^2 = 1x^0 + 1x2,即表示2克的砝码有两种状态,不取或取,不取则为1x0,取则为1*x^2
把组合问题的加法法则和幂级数的乘幂对应起来
对于1+x^2,讨论x前面的系数的意义?
这里的系数表示状态数(方案数)
1+x2,也就是1x0 + 1x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)
所以,前面说的那句话的意义大家可以理解了吧?
几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:
(1+x)(1+x2)(1+x3)(1+x^4)
=(1+x+x2+x4)(1+x3+4+x^7)
=1 + x + x^2 + 2x^3 + 2x^4 + 2x^5+ 2x^6 + 2*x^7 + x^8 + x^9 + x^10
从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)
例如右端有2x5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。
故称出6克的方案数有2种,称出10克的方案数有1种 。
第二种例子分析
求用1分、2分、3分的邮票贴出不同数值的方案数:
大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。

以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;
即 :4=1+1+1+1=1+1+2=1+3=2+2
这里再引出两个概念"整数拆分"和"拆分数":
所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。
整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数。
下面是指数型母函数的定义:

对于上面的问题“假设有8个元素,其中a1重复3次,a2重复2次,a3重复3次。从中取r个组合,求其组合数。”:
(感谢 3Dnn 同学指出,下图的 28/3! 应该改为 26/3!)
本题就是指数型母函数的代表
题目分析
对于给出的n中物品,每种物品的个数给出,求从中取出m件物品构成的排列数
   #include<stdio.h>
   #include<string.h>
   int jc[11]= {1,1,2,6,24,120,720,5040,40320,326880,3268800};
              ///数组用于存储从0到10的阶乘
   int num[12];
   double c1[110],c2[110];
   int main()
   {
       int n,m;
       while(~scanf("%d%d",&n,&m))
       {
           memset(c1,0,sizeof(c1));
           memset(c2,0,sizeof(c2));
           for(int i=1; i<=n; i++)
           {
               scanf("%d",&num[i]);
           }
           for(int i=0; i<=num[1]; i++)
           {
               c1[i]=1.0/jc[i];///计算第一种物品存在不同个数的组合数
           }
           for(int i=2; i<=n; i++)///下面从第二种物品开始
           {
               for(int j=0; j<=m; j++)///目前已经存在的物品数,肯定小于m
               {
                   for(int k=0; k<=num[i]&&k<=m; k++)///要从当前的第i种物品中取出来的个数
                       c2[j+k]+=c1[j]/jc[k];///最终形成的一个排列数
               }
               for(int j=0; j<=m; j++)
               {
                   c1[j]=c2[j];///c1存储的是最终的确定值,c2在刷新计算
                   c2[j]=0;
               }
           }
           printf("%.0lf\n",jc[m]*1.0*c1[m]);
       }
   }												
											HDU 1521 排列组合 (母函数)的更多相关文章
- HDU 1521 排列组合 指数型母函数
		
排列组合 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status D ...
 - Hdu 1521 排列组合
		
a1 n1 a2 n2 ... ak nkn=n1+n2+...+nk从n个数中选r个排列(不是组合噢)// 指数型母函数// 模板#include <iostream> #include ...
 - hdu 1521 排列组合 —— 指数型生成函数
		
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1521 标准的指数型生成函数: WA了好几遍,原来是多组数据啊囧: 注意精度,直接强制转换(int)是舍去小 ...
 - hdu 1521 排列组合【指数型生成函数】
		
根据套路列出式子:\( \prod_{i=1}^{n}\sum_{j=0}^{c[i]}\frac{x^j}{j!} \),然后暴力展开即可 #include<iostream> #inc ...
 - hdu 4535(排列组合之错排公式)
		
吉哥系列故事——礼尚往来 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tota ...
 - hdu 4497(排列组合+LCM和GCD)
		
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
 - hdu 4705 排列组合
		
思路:枚举能是A,B,C在一条简单路径上的中点. 计算多少个几何能满足.在用总数减去 #pragma comment(linker, "/STACK:16777216") #inc ...
 - 排列组合 HDU - 1521 -指数型母函数
		
排列组合 HDU - 1521 一句话区分指数型母函数和母函数就是 母函数是组合数,指数型母函数是排列数 #include<bits/stdc++.h> using namespace s ...
 - ACM~排列组合&&hdu例子
		
排列组合是数学中的一个分支.在计算机编程方面也有非常多的应用,主要有排列公式和组合公式.错排公式.母函数.Catalan Number(卡特兰数)等. 一.有关组合数学的公式 1.排列公式 P(n ...
 
随机推荐
- 让VS2013支持 C# 6.0 语法
			
还未升级使用VS2015前,又想尝试使用C# 6.0的语言特性,可以用以下方法启用: VS2013中“工具”下选择“程序包管理器控制台”: 选中需要使用C# 6.0的项目,再敲入"Insta ...
 - webgl学习笔记五-纹理
			
写在前面 建议先阅读下前面我的三篇文章. webgl学习笔记一-绘图单点 webgl学习笔记二-绘图多点 webgl学习笔记三-平移旋转缩放 术语 : 纹理 :图像 图形装配区域 :顶点着色器顶点坐标 ...
 - 打印实例对象的名字 默认调用父类的toString 可重写
 - bzoj4639 博士的选取器
			
题意 给出一个长度为n的正整数序列,要求把它划分成若干个连续的区间,使得每个区间的数字之和都不超过给定的lim.最后的代价等于每个区间的最大值之和.求最小代价.n<=300000 分析 定义f[ ...
 - bzoj5090[lydsy11月赛]组题
			
裸的01分数规划,二分答案,没了. #include<cstdio> #include<algorithm> using namespace std; const int ma ...
 - 【51Nod1773】A国的贸易  FWT+快速幂
			
题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...
 - scrollTop()案例
			
设置 <div> 元素中滚动条的垂直偏移: 定义和用法 scrollTop() 方法返回或设置匹配元素的滚动条的垂直位置. scroll top offset 指的是滚动条相对于其顶部的偏 ...
 - 【BZOJ5415】【NOI2018】归程(克鲁斯卡尔重构树)
			
[NOI2018]归程(克鲁斯卡尔重构树) 题面 洛谷 题解 我在现场竟然没有把这道傻逼题给切掉,身败名裂. 因为这题就是克鲁斯卡尔重构树的模板题啊 我就直接简单的说一下把 首先发现答案就是在只经过海 ...
 - NOI2018前的每日记录
			
NOI2018前的每日记录 开头 今天是\(2018.7.2\),不知不觉已经这么久了.本来还是高一的小蒟蒻,过不了多久就要成为高二的老年选手了. 再过半个月我也要去\(NOI\)打酱油了.我这种D类 ...
 - @Springboot搭建项目controller层接收json格式的对象失败
			
今天在使用swagger2测试的时候出错 1.@requestBody注解常用来处理content-type不是默认的application/x-www-form-urlcoded编码的内容,比如说: ...