题面

Description

这是一道非常直白的可持久化线段树的练习题,目的并不是虐人,而是指导你入门可持久化数据结构。

线段树有个非常经典的应用是处理RMQ问题,即区间最大/最小值询问问题。现在我们把这个问题可持久化一下:

Q k l r 查询数列在第k个版本时,区间[l, r]上的最大值

M k p v 把数列在第k个版本时的第p个数修改为v,并产生一个新的数列版本

最开始会给你一个数列,作为第1个版本。

每次M操作会导致产生一个新的版本。修改操作可能会很多呢,如果每次都记录一个新的数列,空间和时间上都是令人无法承受的。所以我们需要可持久化数据结构:

对于最开始的版本1,我们直接建立一颗线段树,维护区间最大值。

修改操作呢?我们发现,修改只会涉及从线段树树根到目标点上一条树链上logn个节点而已,其余的节点并不会受到影响。所以对于每次修改操作,我们可以只重建修改涉及的节点即可。就像这样:

P

需要查询第k个版本的最大值,那就从第k个版本的树根开始,像查询普通的线段树一样查询即可。

Input

第一行两个整数N, Q。N是数列的长度,Q表示询问数

第二行N个整数,是这个数列

之后Q行,每行以0或者1开头,0表示查询操作Q,1表示修改操作M,格式为

0 k l r 查询数列在第k个版本时,区间[l, r]上的最大值 或者

1 k p v 把数列在第k个版本时的第p个数修改为v,并产生一个新的数列版本

Output

对于每个M询问,输出正确答案

Sample Input

4 5

1 2 3 4

0 1 1 4

1 1 3 5

0 2 1 3

0 2 4 4

0 1 2 4

Sample Output

4

5

4

4

Hint

样例解释:

序列版本1: 1 2 3 4

查询版本1的[1, 4]最大值为4

修改产生版本2: 1 2 5 4

查询版本2的[1, 3]最大值为5

查询版本1的[4, 4]最大值为4

查询版本1的[2, 4]最大值为4

N <= 10000 Q <= 100000

对于每次询问操作的版本号k保证合法,

区间[l, r]一定满足1 <= l <= r <= N

Source

原题见: http://syzoj.com/problem/247

可持久化线段树

题解

主席树板子题

自己YY了一晚上弄出来了

到时候再写主席树的东西吧。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 1000000
#define ll long long
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Node//线段树节点
{
int ch[2];//左儿子和右儿子
int l,r;//左节点右节点
int val;//最大值
}c[MAX];
int n,Q,a[MAX],cnt,Root[MAX];
void Build(int now,int l,int r)//构建第一版本的线段树
{
++cnt;
c[now].l=l;c[now].r=r;
if(l==r){c[now].val=a[l];return;}
int mid=(l+r)>>1;
c[now].ch[0]=cnt+1;
Build(cnt+1,l,mid);
c[now].ch[1]=cnt+1;
Build(cnt+1,mid+1,r);
c[now].val=max(c[c[now].ch[0]].val,c[c[now].ch[1]].val);
}
int Query(int now,int al,int ar)//查询最大值
{
int l=c[now].l,r=c[now].r;
if(l==al&&ar==r)return c[now].val;
int lson=c[now].ch[0],rson=c[now].ch[1];
int mid=(l+r)>>1;
if(ar<=mid)return Query(lson,al,ar);
if(al>mid)return Query(rson,al,ar);
return max(Query(lson,al,mid),Query(rson,mid+1,ar));
}
void Update(int now,int k,int x)
{
++cnt;int tt=cnt;
c[cnt]=c[now];//直接复制要更新的节点
int l=c[now].l,r=c[now].r;
if(l==r){c[cnt].val=x;return;}
int mid=(l+r)>>1;
if(k<=mid){c[tt].ch[0]=cnt+1;Update(c[now].ch[0],k,x);}
else{c[tt].ch[1]=cnt+1;Update(c[now].ch[1],k,x);}
c[tt].val=max(c[c[tt].ch[0]].val,c[c[tt].ch[1]].val);
}
int main()
{
n=read();Q=read();
for(int i=1;i<=n;++i)a[i]=read();
Build(1,1,n);Root[1]=1;
int Ver=1;
while(Q--)
{
int tt=read(),k=read(),L=read(),R=read();
if(tt==0)
printf("%d\n",Query(Root[k],L,R));
else
{
Root[++Ver]=cnt+1;//当前新版本的根节点
Update(Root[k],L,R);
}
}
}

【CJOJ2316】【模板】可持久化线段树的更多相关文章

  1. 【洛谷P3834】(模板)可持久化线段树 1(主席树)

    [模板]可持久化线段树 1(主席树) https://www.luogu.org/problemnew/show/P3834 主席树支持历史查询,空间复杂度为O(nlogn),需要动态开点 本题用一个 ...

  2. 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]

    题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...

  3. 洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)

    题目链接 //离散化后范围1~cnt不要错 #include<cstdio> #include<cctype> #include<algorithm> //#def ...

  4. [学习笔记] 可持久化线段树&主席树

    众所周知,线段树是一个非常好用也好写的数据结构, 因此,我们今天的前置技能:线段树. 然而,可持久化到底是什么东西? 别急,我们一步一步来... step 1 首先,一道简化的模型: 给定一个长度为\ ...

  5. Luogu P3919 【模板】可持久化数组 可持久化线段树

    其实就是可持久化线段树的模板题线段树不会看这里 #include<bits/stdc++.h> ; using namespace std; ]; ],rc[N*],val[N*],cnt ...

  6. LuoguP3834 【模板】可持久化线段树 1(主席树)|| 离散化

    题目:[模板]可持久化线段树 1(主席树) 不知道说啥. #include<cstdio> #include<cstring> #include<iostream> ...

  7. Luogu P3919【模板】可持久化数组(可持久化线段树/平衡树)

    题面:[模板]可持久化数组(可持久化线段树/平衡树) 不知道说啥,总之我挺喜欢自己打的板子的! #include<cstdio> #include<cstring> #incl ...

  8. 洛谷 P3919 【模板】可持久化数组(可持久化线段树/平衡树)-可持久化线段树(单点更新,单点查询)

    P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集 ...

  9. 洛谷——P3919 【模板】可持久化数组(可持久化线段树/平衡树)

    P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集 ...

随机推荐

  1. 时间序列数据库rrd启动

    然后执行启动定时任务目录:etc/crontab SHELL=/bin/bashPATH=/sbin:/bin:/usr/sbin:/usr/binMAILTO=rootHOME=/ # For de ...

  2. 金融&业务常识积累

    前言 在项目中遇到很多名词,不太明白其含义.这些名词都是和金融领域紧密相关并且与项目的业务有着直接的联系.因此,决定通过搜集资料和归纳总结,对经后的工作产生一定的帮助. 常见的金融知识 PDL: Pa ...

  3. ElasticSearch Kibana 和Logstash 安装x-pack记录

    前言 最近用到了ELK的集群,想想还是用使用官方的x-pack的monitor功能对其进行监控,这里先上图看看: 环境如下: 操作系统: window 2012 R2 ELK : elasticsea ...

  4. 【JavaWeb】权限管理系统

    前言 前面我们做的小项目都是一个表的,业务代码也相对简单.现在我们来做一个权限管理系统,体验一下多表的业务逻辑,顺便巩固一下过滤器的知识.! 目的 现在我有一个管理商品.订单的页面.当用户点击某个超链 ...

  5. Linux 小记 — 网络管理

    前言 前段时间需要配置一台私网 ECS 联外网,阿里云比较推荐的方案是创建一个 Nat 网关并绑定 EIP, 以此来统一所有 ECS 的网络出口.由于我已经拥有一台外网 ECS(不想多掏钱,且我自己的 ...

  6. ASP.NET Core的身份认证框架IdentityServer4--(2)API跟WEB端配置

    API配置 可以使用ASP.NET Core Web API模板.同样,我们建议您控制端口并使用与之前一样的方法来配置Kestrel和启动配置文件.端口配置为http://localhost:5001 ...

  7. @Scope注解

    @Scope(value=ConfigurableBeanFactory.SCOPE_PROTOTYPE)这个是说在每次注入的时候回自动创建一个新的bean实例 @Scope(value=Config ...

  8. 如何高效的编写Verilog HDL——进阶版

    博主之前写过一篇文章来谈论如何高效的编写Verlog HDL——菜鸟版,在其中主要强调了使用Notepad++来编写Verilog HDL语言的便捷性,为什么说是菜鸟版呢,因为对于新手来说,在还没有熟 ...

  9. react按需加载(getComponent优美写法),并指定输出模块名称解决缓存(getComponent与chunkFilename)

    react配合webpack进行按需加载的方法很简单,Route的component改为getComponent,组件用require.ensure的方式获取,并在webpack中配置chunkFil ...

  10. java读取文件乱码

    List<String> lines=new ArrayList<String>(); BufferedReader br = new BufferedReader(new F ...