3156: 防御准备

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 2279  Solved: 959
[Submit][Status][Discuss]

Description

 

Input

第一行为一个整数N表示战线的总长度。

第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai。

Output

共一个整数,表示最小的战线花费值。

Sample Input

10
2 3 1 5 4 5 6 3 1 2

Sample Output

18

HINT

1<=N<=10^6,1<=Ai<=10^9

Source

Katharon+#1

f[i]=f[j]+(i-j)*i-(sum[i]-sum[j])+a[i]
递推方程式和1096有点类似
sum[i]表示i到1的距离

设k<j && j 优于 k
f[j]+(i-j)*i-(sum[i]-sum[j])+a[i]<=f[k]+(i-k)*i-(sum[i]-sum[k])+a[i]
化简得f[j]-i*j+sum[j]<=f[k]-i*k+sum[k]

证明决策单调性
需要证明 对于 t>i j的决策优于k
即f[j]-t*j+sum[j]<=f[k]-t*k+sum[k]
设t=i+v 代入上式得
f[j]-i*j+sum[j]-v*j<=f[k]-i*k+sum[k]-v*k
-v*j<=-v*k 上式成立 决策单调性得证
证毕

斜率方程式
假设k<j&&j决策优与k
满足f[j]-i*j+sum[j]<=f[k]-i*k+sum[k]
=> f[j]+sum[j]-f[k]-sum[k]<=i*(j-k)
=> (f[j]+sum[j]-f[k]-sum[k])/(j-k)<=i
优化dp即可

 #include<bits/stdc++.h>
#define N 1000005
#define ll long long
using namespace std;
ll sum[N],f[N];
int n,q[N],a[N];
inline char gc(){
static char s[],*p1,*p2;
if(p1==p2)p2=(p1=s)+fread(s,,,stdin);
if(p1==p2)return EOF;return *p1++;
}
inline int read(){
int x=;char ch=gc();
while(ch<''||ch>'')ch=gc();
while(ch<=''&&ch>='')x=x*+ch-'',ch=gc();
return x;
}
ll U(int k,int j){return f[j]+sum[j]-f[k]-sum[k];}
int D(int k,int j){return j-k;}
int main(){
n=read();
for(register int i=;i<=n;++i){
a[i]=read();
sum[i]=sum[i-]+i;
}
int h=,t=,j;
for(register int i=;i<=n;++i){
while(h<t&&D(q[h],q[h+])*i>=U(q[h],q[h+]))++h;
j=q[h];f[i]=f[j]+1ll*(i-j)*i-sum[i]+sum[j]+a[i];
while(h<t&&U(q[t],q[t-])*D(i,q[t])>=U(i,q[t])*D(q[t],q[t-]))--t;
q[++t]=i;
}
printf("%lld\n",f[n]);
return ;
}

bzoj3156防御准备 斜率优化dp的更多相关文章

  1. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  2. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  3. bzoj3156 防御准备 - 斜率优化

    Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...

  4. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  5. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  6. 【BZOJ3156】防御准备 斜率优化

    [BZOJ3156]防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小 ...

  7. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  8. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  9. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

随机推荐

  1. poj2029 Get Many Persimmon Trees

    http://poj.org/problem?id=2029 单点修改 矩阵查询 二维线段树 #include<cstdio> #include<cstring> #inclu ...

  2. AngularJS1.X学习笔记7-过滤器

    最近参加笔试被虐成狗了,感觉自己的算法太弱了.但是还是先花点事件将这个AngularJS学习完.今天学习filter 一.内置过滤器 (1)过滤单个数据值 <!DOCTYPE html> ...

  3. 聊一聊C#的Equals()和GetHashCode()方法

    博客创建一年多,还是第一次写博文,有什么不对的地方还请多多指教. 关于这次写的内容可以说是老生长谈,百度一搜一大堆.大神可自行绕路. 最近在看Jeffrey Richter的CLR Via C#,在看 ...

  4. 用‘+=’拼接字符串,打印时总会出现一个undefined

    var str; for(var i = 0; i < 5; i++){ str += String(i); } console.log(str); 他喵的,打印的结果竟然是"unde ...

  5. docker安装+测试环境的搭建---

    漏洞演练环境docker地址:http://vulhub.org/#/environments/ 环境:kali-linux-2017.2-amd64.iso 一.docker安装 1.先更新一波源: ...

  6. SpringBoot的重要特性

    一.Web特性 Spring Boot 提供了spring-boot-starter-web来为Web开发予以支持,spring-boot-starter-web为我们提供了嵌入的Tomcat以及Sp ...

  7. ELK学习总结(2-6)elk的mapping

    1.什么是映射 映射:创建索引的时候,预先定义字段的类型及相关属性 作用:这样会让索引建立的更加细致和完善,如:是否存储.使用何种分析器.重要级别 分类:静态映射和动态映射 2.字段类型:string ...

  8. MySQL5.7.21解压版安装详细教程以及一些问题的解决

    笔者是最近玩mysql的时候玩坏了,想写点东西记录下.我安装的是MySQL5.7.21,安装之后没有my.ini文件. 遇到了2个问题,一是mysql服务启动不了,被my.ini整了,二是root密码 ...

  9. python基础——面向对象的程序设计

    python基础--面向对象的程序设计 1 什么是面向对象的程序设计 面向过程的程序设计的核心是过程,过程即解决问题的步骤,面向过程的设计就好比精心设计好一条流水线,考虑周全什么时候处理什么东西. 优 ...

  10. ROS系统MoveIt玩转双臂机器人系列(一)

    一.ROS系统的MoveIt模块简介 机器人操作系统ROS目前最受关注的两个模块是导航(Navigation)和机械臂控制(MoveIt!),其中,机械臂控制模块(后面简称MoveIt)可以让用户快速 ...