Uva - 177 - Paper Folding
If a large sheet of paper is folded in half, then in half again, etc, with all the folds parallel, then opened up flat, there are a series of parallel creases, some pointing up and some down, dividing the paper
into fractions of the original length. If the paper is only opened ``half-way'' up, so every crease forms a 90 degree angle, then (viewed end-on) it forms a ``dragon curve''. For example, if four successive folds are made, then the following curve is seen
(note that it does not cross itself, but two corners touch):

Write a program to draw the curve which appears after N folds. The exact specification of the curve is as follows:
- The paper starts flat, with the ``start edge'' on the left, looking at it from above.
- The right half is folded over so it lies on top of the left half, then the right half of the new double sheet is folded on top of the left, to form a 4-thick sheet, and so on, for N folds.
- Then every fold is opened from a 180 degree bend to a 90 degree bend.
- Finally the bottom edge of the paper is viewed end-on to see the dragon curve.
From this view, the only unchanged part of the original paper is the piece containing the ``start edge'', and this piece will be horizontal, with the ``start edge'' on the left. This uniquely defines the curve.
In the above picture, the ``start edge'' is the left end of the rightmost bottom horizontal piece (marked `s'). Horizontal pieces are to be displayed with the underscore character ``_'', and vertical pieces with the ``|'' character.
Input
Input will consist of a series of lines, each with a single number N (
).
The end of the input will be marked by a line containing a zero.
Output
Output will consist of a series of dragon curves, one for each value of N in the input. Your picture must be shifted as far left, and as high as possible. Note that for large N, the picture will
be greater than 80 characters wide, so it will look messy on the screen. The pattern for each different number of folds is terminated by a line containing a single `^'.
Sample input
2 4 1 0
Sample output
|_ _| ^ _ _ |_|_| |_ _| _| |_| ^ _| ^
经典题目吧,感觉是练习递归的,可是有非递归的方式做,果断直接迭代了。
观察每次展开新部分和旧部分,新的尾和旧的头相对应,依次往中间走对应起来,得到对应关系:
上变成左
下变成右
左变成下
右变成上
画图的部分用map存储。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>
using namespace std;
const int maxn = 1 << 15;
int A[maxn];
// 0,1,2,3分别是上下左右
int trans[] = { 2, 3, 1, 0 };
map<int, set< pair<int, int> > > P;
void build(int n)
{
int m = 1;
A[0] = 3;
for (int i = 1; i <= n; i++) {
for (int j = m - 1, k = m; j >= 0; j--, k++) { // 算出下一次展开的位置
A[k] = trans[A[j]];
}
m <<= 1;
}
int x = -1, y = 0, px = 0, py = 0;
P.clear();
// 把每个短线的位置计算出来,并放入P中
for (int i = 0; i < m; i++) {
if (A[i] == 0) {
x = px << 1;
y = py;
P[y].insert(make_pair(x, 0));
py++;
}
else if (A[i] == 1) {
x = px << 1;
y = py - 1;
P[y].insert(make_pair(x, 1));
py--;
}
else if (A[i] == 2) {
x = (px << 1) - 1;
y = py;
P[y].insert(make_pair(x, 2));
px--;
}
else {
x = (px << 1) + 1;
y = py;
P[y].insert(make_pair(x, 3));
px++;
}
}
}
void draw()
{
// 设置无穷大和无穷小,具体为什么在这篇题解前一篇博文有说明
int mxy = -0x3f3f3f3f, mnx = 0x3f3f3f3f;
for (map<int, set< pair<int, int> > >::iterator it = P.begin();
it != P.end(); it++) {
mxy = max(mxy, it->first);
for (set< pair<int, int> >::iterator jt = it->second.begin();
jt != it->second.end(); jt++) {
mnx = min(mnx, jt->first);
}
}
// 从最上面一行画起,所以需要反向遍历
for (map<int, set< pair<int, int> > >::reverse_iterator it = P.rbegin();
it != P.rend(); it++) {
int i = mnx;
for (set<pair<int, int> >::iterator jt = it->second.begin();
jt != it->second.end(); jt++) {
while (i < jt->first) {
cout << ' ';
i++;
}
i++;
if (jt->second == 0 || jt->second == 1) {
cout << '|';
}
else {
cout << '_';
}
}
cout << endl;
}
cout << '^' << endl;
}
int main()
{
ios::sync_with_stdio(false);
int n;
while (cin >> n && n) {
build(n);
draw();
}
return 0;
}
Uva - 177 - Paper Folding的更多相关文章
- uva 177:Paper Folding(模拟 Grade D)
题目链接 题意:一张纸,每次从右往左对折.折好以后打开,让每个折痕都自然的呈90度.输出形状. 思路:模拟折……每次折想象成把一张纸分成了正面在下的一张和反面在上的一张.维护左边和方向,然后输出.细节 ...
- Paper Folding UVA - 177 模拟+思路+找规律
题目:题目链接 思路:1到4是很容易写出来的,我们先考虑这四种情况的绘制顺序 1:ru 2:rulu 3:rululdlu 4:rululdluldrdldlu 不难发现,相较于前一行,每一次增加一倍 ...
- 【uva 177】Paper Folding(算法效率--模拟)
P.S.模拟真の难打,我花了近乎三小时!o(≧口≦)o 模拟题真的要思路清晰!分块调试. 题意:著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折--每次对折都是从右往左折,因此在折了很多次以后 ...
- UVA 177 PaperFolding 折纸痕 (分形,递归)
著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折……每次对折都是从右往左折,因此在折了很多次以后,原先的大纸会变成一个窄窄的纸条.现在把这个纸条沿着折纸的痕迹打开,每次都只打开“一半”,即把每 ...
- 紫书 习题8-5 UVa 177 (找规律)
参考了https://blog.csdn.net/weizhuwyzc000/article/details/47038989 我一开始看了很久, 拿纸折了很久, 还是折不出题目那样..一脸懵逼 后来 ...
- 【Uva 1630】Folding
[Link]: [Description] 你能对字符串进行压缩的操作; 即把连续出现的相同的子串改成它出现的次数+这个最基本的字符串的形式; 问你这个字符串最短能被压缩得多短; [Solution] ...
- github上所有大于800 star OC框架
https://github.com/XCGit/awesome-objc-frameworks#awesome-objc-frameworks awesome-objc-frameworks ID ...
- 一位学长的ACM总结(感触颇深)
发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...
- GitHub前50名的Objective-C动画相关库
GitHub的Objective-C的动画UI库其实是最多的一部分,GitHub有相当一部分的动画大牛,如Jonathan George,Nick Lockwood,Kevin,Roman Efimo ...
随机推荐
- Hibernate异常之cascade
org.hibernate.MappingException: Unsupported cascade style: delete-option at org.hibernate.engine.spi ...
- Docker 联合文件系统
联合文件系统(UnionFS)是一种分层.轻量级并且高性能的文件系统,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several dir ...
- JDBC访问数据库的一些小技巧
一. 连接 1.使用try with resources关闭JDBC资源 示例代码如下: public List<User> getUser(int userId) { try (Conn ...
- Latex:简介及安装
http://blog.csdn.net/pipisorry/article/details/53998352 LaTex是一个排版工具,功能强大.它是一个"所想即所得"的工具,你 ...
- SpringBatch前言
批处理应用程序就是对程序进行批量处理. 特点:批量应用程序处理大量数据而无需人类干预. 用途:可以选择使用批处理程序来计算每月的财务报表.计算统计和索引文件的数据等等. 应用:当银行系统中有很多业务都 ...
- 【Java二十周年】Delphi转行java的一些小感触
本文纯属一届小码农对java使用过程的体验感触 目录: 初遇java编程语言 与java的擦肩 深入java 跨平台性 开源支持 web的支撑 初遇java编程语言 刚上大学的时候,完全是个电脑盲.刚 ...
- 【SSH系列】---Hibernate的基本映射
开篇前言 在前面的博文中,小编分别介绍了[SSH系列]-- hibernate基本原理&&入门demo,通过这篇博文,小伙伴们对hibernate已经有了基本的了解,以及h ...
- SSL协议相关证书文件
密钥: 我理解是公钥+私钥的统称. 密钥对: 公钥(证书)和私钥成对存在.通信双方各持有自己的私钥和对方的公钥.自己的私钥需密切保护,而公钥是公开给对方的.在windows下,单独存在的公钥一般是后缀 ...
- How to generate the complex data regularly to Ministry of Transport of P.R.C by DB Query Analyzer
How to generate the complex data regularly to Ministry of Transport of P.R.C by DB Query Analyzer 1 ...
- 你知道RxJava也可以实现AsyncTask吗?
使用RxJava实现异步操作(AsyncTask) 常见的异步操作我们可以联想到AsyncTask或者handler,其实google创造出的目的也就是为了让代码更加清晰明了,让代码更加简洁. 而Rx ...