import tensorflow as tf
from tensorflow import keras
from keras import Sequential,datasets, layers, optimizers, metrics def preprocess(x, y):
"""数据处理函数"""
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y # 加载数据
(x, y), (x_test, y_test) = datasets.fashion_mnist.load_data()
print(x.shape, y.shape) # 处理train数据
batch_size = 128
db = tf.data.Dataset.from_tensor_slices((x, y))
db = db.map(preprocess).shuffle(10000).batch(batch_size) # 处理test数据
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.map(preprocess).batch(batch_size) # # 生成train数据的迭代器
db_iter = iter(db)
sample = next(db_iter)
print(f'batch: {sample[0].shape,sample[1].shape}') # 设计网络结构
model = Sequential([
layers.Dense(256, activation=tf.nn.relu), # [b,784] --> [b,256]
layers.Dense(128, activation=tf.nn.relu), # [b,256] --> [b,128]
layers.Dense(64, activation=tf.nn.relu), # [b,128] --> [b,64]
layers.Dense(32, activation=tf.nn.relu), # [b,64] --> [b,32]
layers.Dense(10) # [b,32] --> [b,10], 330=32*10+10
]) model.build(input_shape=[None, 28 * 28])
model.summary() # 调试
# w = w - lr*grad
optimizer = optimizers.Adam(lr=1e-3) # 优化器,加快训练速度 def main():
"""主运行函数"""
for epoch in range(10):
for step, (x, y) in enumerate(db):
# x:[b,28,28] --> [b,784]
# y:[b]
x = tf.reshape(x, [-1, 28 * 28])
with tf.GradientTape() as tape:
# [b,784] --> [b,10]
logits = model(x)
y_onehot = tf.one_hot(y, depth=10)
# [b]
loss_mse = tf.reduce_mean(tf.losses.MSE(y_onehot, logits))
loss_ce = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True))
grads = tape.gradient(loss_ce, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 == 0:
print(epoch, step, f'loss: {float(loss_ce),float(loss_mse)}') # test
total_correct = 0
total_num = 0
for x, y in db_test:
# x:[b,28,28] --> [b,784]
# y:[b]
x = tf.reshape(x, [-1, 28 * 28])
# [b,10]
logits = model(x)
# logits --> prob [b,10]
prob = tf.nn.softmax(logits, axis=1)
# [b,10] --> [b], int32
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# pred:[b]
# y:[b]
# correct: [b], True: equal; False: not equal
correct = tf.equal(pred, y)
correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32))
total_correct += int(correct)
total_num += x.shape[0]
acc = total_correct / total_num
print(epoch, f'test acc: {acc}') if __name__ == '__main__':
main()

吴裕雄--天生自然TensorFlow2教程:手写数字问题实战的更多相关文章

  1. 吴裕雄--天生自然TensorFlow2教程:前向传播(张量)- 实战

    手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3-255表示图片的灰度值,0表示纯白,255表示纯黑 ...

  2. 吴裕雄--天生自然TensorFlow2教程:函数优化实战

    import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...

  3. 吴裕雄--天生自然TensorFlow2教程:反向传播算法

  4. 吴裕雄--天生自然TensorFlow2教程:链式法则

    import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...

  5. 吴裕雄--天生自然TensorFlow2教程:多输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  6. 吴裕雄--天生自然TensorFlow2教程:单输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = tf.con ...

  7. 吴裕雄--天生自然TensorFlow2教程:损失函数及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  8. 吴裕雄--天生自然TensorFlow2教程:激活函数及其梯度

    import tensorflow as tf a = tf.linspace(-10., 10., 10) a with tf.GradientTape() as tape: tape.watch( ...

  9. 吴裕雄--天生自然TensorFlow2教程:梯度下降简介

    import tensorflow as tf w = tf.constant(1.) x = tf.constant(2.) y = x * w with tf.GradientTape() as ...

随机推荐

  1. 题解【2.23考试T1】div

    1. div[题目描述] 这是一道传统题,源代码的文件名为 div.cpp/c/pas. 给定一棵树,你要判断是否存在一条边,使得割掉这条边后,这棵树被分成了点数相等的两部分,并且如果存在,请你找到这 ...

  2. 初学Java时使用记事本开发出现的中文乱码问题

    如果是使用微软记事本,那就会麻烦一点,将后缀改为.txt,用记事本打开,左上方:文件→另存为→弹出的窗口的下方会出现使用的编码形式,将编码形式修改为ANSI编码,点击保存→确定替换即可,修改后将后缀改 ...

  3. js判断有无属性及新添属性

    1.Object 判断有无新属性 obj.hasOwnProperty(propertyName)  //有无指定属性propertyName        Object.keys(obj)      ...

  4. ubuntu 终端快捷方式汇总

    terminal 是一个命令行终端,将启动系统默认的shell,shell是一个解释并执行在命令行提示符输入的命令的程序. 启动 terminal1 在 “面板主页” 的应用程序搜索栏中,输入命令gn ...

  5. hdu1695(莫比乌斯反演+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...

  6. SpringCloud Netflix Ribbon

    Eureka客户端的负载均衡:从Eureka server拿到节点列表,客户端自己使用负载均衡的算法确定要使用的节点: Eureka服务端的负载均衡:服务端使用负载均衡的算法,从节点列表中确定要使用的 ...

  7. spring_boot 中通过PageHelper分页

    1. 第一步 导入pom.xml依赖 <!--PageHelper模版--> <!--PageHelper模版--> <dependency> <groupI ...

  8. 「题解」「CF468D」树中的配对

    目录 题目大意 思路 源代码 本博客除代码之外,来自 skylee 大佬. 题目大意 一棵\(n(n\le10^5)\)个编号为\(1\sim n\)的点的带边权的树,求一个排列\(p_{1\sim ...

  9. Bugku-CTF之文件包含2 (150)

    Day37   文件包含2

  10. yii2自定义报错页面

    在Yii2版本的advanced高级模板环境中:设置404自定义页面的方法 1.config/main.php文件 'errorHandler' => [ 'errorAction' => ...