【OI】倍增求LCA
╭(′▽`)╯
总之,我们都知道lca是啥,不需要任何基础也能想出来怎么用最暴力的方法求LCA,也就是深度深的点先跳到深度浅的点的同一深度,然后一起向上一步步跳。这样显然太慢了!
所以我们要用倍增,倍增比较屌,直接2^k速度往上跳,而且复杂度和树剖lca差不多,那么步骤分为两步
1.让两个点到同一深度
2.到了同一深度同步往上跳
反正我一开始看的时候一直在想,万一跳过了怎么办?哈哈哈,所以说我们有办法嘛:
定义deepv为v点的深度,设两个要求lca的点分别为a,b,且deepa >= deepb
所以,枚举找出最大的k使2^k <= deepa,这就是最大的跳的距离;
接着让他们到达同一深度:
从大到小枚举k,如果 deepa - 2^k >= deepb就往上跳2^k步,因为如果跳了2^k步的话一定deepa >= deepb
所以,我们跳的第一步一定是能跳的最大的一步,所以接下来只能跳次大的一步,同理跳完之后deepa >= deepb
......
因为k是越来越小的,k = 0的时候2^k = 1,因此无论如何最后都会以最大的效率跳到相同的深度
现在跳到了相同的深度,然后要同时向上走找到lca。
假设跳了 2 ^ k步之后它们到的位置不相等,说明lca还在深度更浅的地方,因为如果跳之后到的位置相等了,显然这个位置一定在lca的上面
所以,只要判断跳了 2 ^ k步后它们的位置如果不相等,就跳这步,这样就保证了跳到的深度一定小于lca,最后k = 0时 2 ^ k = 1,
则枚举完了k,它们所在的深度显然一定是lca的深度-1,则lca就是它们任意一个的父亲。
代码(luogu lca模板):
#include <cstdio>
#include <vector>
#include <cstring> const int MaxN = ; int n,m,s;
int par[MaxN][];
int deep[MaxN];
bool vis[MaxN]; struct Edge{
int to,nxt;
}e[MaxN*];
int head[MaxN];
int cnt; void add(int u,int v){
e[++cnt].to = v;
e[cnt].nxt = head[u];
head[u] = cnt;
} void getdeep(int u){
vis[u] = ;
for(int i = head[u]; i; i = e[i].nxt){ int to = e[i].to;
if(to == u || vis[to]) continue; par[to][] = u; deep[to] = deep[u] + ; getdeep(to); } } void getpar(){
for(int up = ; (<<up) <= n; up++){
for(int i = ; i <= n ; i++){
par[i][up] = par[par[i][up-]][up-];
} } } int lca(int u,int v){
if(deep[u] < deep[v] ) std::swap(u,v); int max_jump = -; while(<<(max_jump+) <= deep[u]) max_jump++; for(int i = max_jump; i >= ; i--){
if(deep[u] - (<<i) >= deep[v]){
u = par[u][i];
} } if(u == v)
return u; for(int i = max_jump; i >= ; i--){
if(par[u][i] != par[v][i]){
u = par[u][i];
v = par[v][i]; }
} return par[u][]; return ; } int main()
{
scanf("%d%d%d",&n,&m,&s); for(int i = ; i < n; i++ ){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
//par[v][0] = u;
//par[u][0] = v;
} deep[s] = ; getdeep(s); getpar(); for(int i = ; i <= m; i++){
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",lca(a,b)); } //par[i][j] = par[par[i][j-1]][j-1] return ;
}
【OI】倍增求LCA的更多相关文章
- 树上倍增求LCA(最近公共祖先)
前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...
- [算法]树上倍增求LCA
LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...
- 【倍增】洛谷P3379 倍增求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- hdu 2586 How far away ? 倍增求LCA
倍增求LCA LCA函数返回(u,v)两点的最近公共祖先 #include <bits/stdc++.h> using namespace std; *; struct node { in ...
- 倍增求lca模板
倍增求lca模板 https://www.luogu.org/problem/show?pid=3379 #include<cstdio> #include<iostream> ...
- 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...
- 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))
倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...
- 树链剖分与倍增求LCA
树链剖分与倍增求\(LCA\) 首先我要吐槽机房的辣基供电情况,我之前写了一上午,马上就要完成的时候突然停电,然后\(GG\)成了送链剖分 其次,我没歧视\(tarjan LCA\) 1.倍增求\(L ...
- [学习笔记] 树上倍增求LCA
倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...
随机推荐
- python scikit-learn计算tf-idf词语权重
python的scikit-learn包下有计算tf-idf的api,研究了下做个笔记 1 安装scikit-learn包 sudo pip install scikit-learn 2 中文分 ...
- 1.开始Spring
1 对Spring的认识 为了实现控制反转,我们可以想象java创建了一个工厂类,工厂类可以去读取配置文件 比如一个.property文件.通过这个文件中的配置,反射创建一些对象,当外界需要某个类的对 ...
- 搭建maven聚合工程包含springboot模块
一.新建一个maven项目 二.删除src 打开pom.xml 补充标签 <packaging>pom</packaging> 新建 <module>brr- ...
- GVEdit中使用graphviz
官方文档 安装完graphviz后,文档在安装目录下,位置如下 E:\Gra2.38\share\graphviz\doc\html 中文乱码解决 将文件保存为utf-8编码 fontname=&qu ...
- LA3905 Meteor
https://vjudge.net/problem/UVALive-3905 计算出每个点在相框中的时间段,扫描线做即可 关键在如何快速计算每个点在相框中的时间段.对每个点进行运动分解,进入的时间L ...
- .NET CORE中Encoding对GB2312等编码的支持
最近.NET CORE做网络爬虫的时候,遇到了charset=gbk,转码的时候,发现直接使用Encoding.GetEncoding(“GB2312”)抛异常了.好吧,看到这个的时候,我是一脸懵逼的 ...
- 针对老式浏览器(主要是IE6、7、8)的css3-mediaqueries.js自适应布局
<meta name="viewport" content="width=device-width, initial-scale=1" /> vie ...
- JAVA面试常见问题之进程和线程篇
1.线程和进程的概念.并行和并发的概念 进程:计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机结构中,进程是程序的基本 ...
- ubuntn16.04指令
基础知识: ubuntn中的/表示根目录,包括bin,mnt等文件夹 /home表示家目录,/home/user表示用户下的家目录,/root表示root目录 常用指令: 进入root : sudo ...
- sql作业启停服务器
IF EXISTS(SELECT * FROM msdb.dbo.sysjobs WHERE name='启用pubs数据库') EXEC msdb.dbo.sp_delete_job @job_na ...